Skip to main content
Top
Published in: Annals of Nuclear Medicine 1/2013

01-01-2013 | Original Article

Dynamic sequence respiratory gated perfusion pulmonary SPECT without external tracking device

Authors: Kenta Sakaguchi, Makoto Hosono, Masakazu Otsuka, Kohei Hanaoka, Kimio Usami, Tatsuro Uto, Kazunari Ishii

Published in: Annals of Nuclear Medicine | Issue 1/2013

Login to get access

Abstract

Objective

The purpose of this study was to develop and evaluate a new method for respiratory gated pulmonary perfusion SPECT (RGPS) based on dynamic acquisition without using an external tracking device (ETD) or list-mode data acquisition.

Methods

In the phantom study, our method used a dynamic sequence technique, which was specified by sequences of 50-ms acquisition during 30 s per view of SPECT instead of using an ETD. For this purpose, we created a computer program that identified respiratory phases by calculating the center of activity (COA) in each dynamic frame image. We compared RGPS using the dynamic sequence acquisition (RGPS-DS) and RGPS using ETD (RGPS-ETD) in phantom studies employing a cylinder phantom filled with technetium-99m solution attached to an instrument providing a simple harmonic motion. In the patient study, RGPS-DS was applied to data collected from 3 patients during a routine study of Tc-MAA pulmonary perfusion SPECT.

Results

In the phantom study, the calculation of COA indicated a good agreement between RGPS-DS and RGPS-ETD. With an oscillatory phantom movement amplitude of 30 mm, the amplitudes determined by RGPS-DS and RGPS-ETD (28.36 and 27.58 mm, respectively) were identical on considering a pixel size of 4.66 mm for reconstructed SPECT images. In the patient study, applicability of our method to patient data was demonstrated.

Conclusions

We have showed the feasibility of our method to obtain RGPS without ETD, and conclude that RGPS-DS may be an innovative and efficient technique in respiratory gated pulmonary perfusion SPECT. Further studies with a larger number of patients should demonstrate the accuracy of our method.
Appendix
Available only for authorised users
Literature
1.
go back to reference Osada H, Machida K, Honda N. Quantification of regional pulmonary flow with 9mTc-MAA SPECT and cine phase contrast MR imaging. Ann Nucl Med. 2002;16(6):423–9.PubMedCrossRef Osada H, Machida K, Honda N. Quantification of regional pulmonary flow with 9mTc-MAA SPECT and cine phase contrast MR imaging. Ann Nucl Med. 2002;16(6):423–9.PubMedCrossRef
2.
go back to reference Suga K, Kawakami Y, Koike H, Iwanaga H, Tokuda O, Okada M, et al. Lung ventilation-perfusion imbalance in pulmonary emphysema: assessment with automated V/Q quotient SPECT. Ann Nucl Med. 2010;24(4):269–77. doi:10.1007/s12149-010-0369-7.PubMedCrossRef Suga K, Kawakami Y, Koike H, Iwanaga H, Tokuda O, Okada M, et al. Lung ventilation-perfusion imbalance in pulmonary emphysema: assessment with automated V/Q quotient SPECT. Ann Nucl Med. 2010;24(4):269–77. doi:10.​1007/​s12149-010-0369-7.PubMedCrossRef
3.
go back to reference Suga K, Kawakami Y, Zaki M, Yamashita T, Matsumoto T, Matsunaga N. Pulmonary perfusion assessment with respiratory gated 99mTc macroaggregated albumin SPECT: preliminary results. Nucl Med Commun. 2004;25(2):183–93.PubMedCrossRef Suga K, Kawakami Y, Zaki M, Yamashita T, Matsumoto T, Matsunaga N. Pulmonary perfusion assessment with respiratory gated 99mTc macroaggregated albumin SPECT: preliminary results. Nucl Med Commun. 2004;25(2):183–93.PubMedCrossRef
4.
go back to reference Klein GJ, Reutter BW, Ho MH, Reed JH, Huesman RH. Real-time system for respiratory-cardiac gating in positron tomography. IEEE Trans Nucl Sci. 1998;45(4):2139–43.CrossRef Klein GJ, Reutter BW, Ho MH, Reed JH, Huesman RH. Real-time system for respiratory-cardiac gating in positron tomography. IEEE Trans Nucl Sci. 1998;45(4):2139–43.CrossRef
5.
go back to reference McNamara JE, Bruyant P, Johnson K, Feng B, Lehovich A, Gu S, et al. An assessment of a low-cost visual tracking system (VTS) to detect and compensate for patient motion during SPECT. IEEE Trans Nucl Sci. 2008;55(3):992–8. doi:10.1109/TNS.2008.915688.PubMedCrossRef McNamara JE, Bruyant P, Johnson K, Feng B, Lehovich A, Gu S, et al. An assessment of a low-cost visual tracking system (VTS) to detect and compensate for patient motion during SPECT. IEEE Trans Nucl Sci. 2008;55(3):992–8. doi:10.​1109/​TNS.​2008.​915688.PubMedCrossRef
6.
go back to reference McNamara JE, Pretorius PH, Johnson K, Mukherjee JM, Dey J, Gennert MA, et al. A flexible multicamera visual-tracking system for detecting and correcting motion-induced artifacts in cardiac SPECT slices. Med Phys. 2009;36(5):1913–23.PubMedCrossRef McNamara JE, Pretorius PH, Johnson K, Mukherjee JM, Dey J, Gennert MA, et al. A flexible multicamera visual-tracking system for detecting and correcting motion-induced artifacts in cardiac SPECT slices. Med Phys. 2009;36(5):1913–23.PubMedCrossRef
7.
go back to reference Mah D, Hanley J, Rosenzweig KE, Yorke E, Braban L, Ling CC, et al. Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int J Radiat Oncol Biol Phys. 2000;48(4):1175–85.PubMedCrossRef Mah D, Hanley J, Rosenzweig KE, Yorke E, Braban L, Ling CC, et al. Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int J Radiat Oncol Biol Phys. 2000;48(4):1175–85.PubMedCrossRef
8.
go back to reference Rosenzweig KE, Hanley J, Mah D, Mageras G, Hunt M, Toner S, et al. The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2000;48(1):81–7.PubMedCrossRef Rosenzweig KE, Hanley J, Mah D, Mageras G, Hunt M, Toner S, et al. The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2000;48(1):81–7.PubMedCrossRef
10.
go back to reference Pazhenkottil AP, Buechel RR, Herzog BA, Nkoulou RN, Valenta I, Fehlmann U, et al. Ultrafast assessment of left ventricular dyssynchrony from nuclear myocardial perfusion imaging on a new high-speed gamma camera. Eur J Nucl Med Mol Imaging. 2010;37(11):2086–92. doi:10.1007/s00259-010-1507-0.PubMedCrossRef Pazhenkottil AP, Buechel RR, Herzog BA, Nkoulou RN, Valenta I, Fehlmann U, et al. Ultrafast assessment of left ventricular dyssynchrony from nuclear myocardial perfusion imaging on a new high-speed gamma camera. Eur J Nucl Med Mol Imaging. 2010;37(11):2086–92. doi:10.​1007/​s00259-010-1507-0.PubMedCrossRef
13.
go back to reference Okubo M, Nishimura Y, Nakamatsu K, Okumura M, Shibata T, Kanamori S, et al. Static and moving phantom studies for radiation treatment planning in a positron emission tomography and computed tomography (PET/CT) system. Ann Nucl Med. 2008;22(7):579–86. doi:10.1007/s12149-008-0166-8.PubMedCrossRef Okubo M, Nishimura Y, Nakamatsu K, Okumura M, Shibata T, Kanamori S, et al. Static and moving phantom studies for radiation treatment planning in a positron emission tomography and computed tomography (PET/CT) system. Ann Nucl Med. 2008;22(7):579–86. doi:10.​1007/​s12149-008-0166-8.PubMedCrossRef
14.
go back to reference Bundschuh RA, Martinez-Moeller A, Essler M, Martinez MJ, Nekolla SG, Ziegler SI, et al. Postacquisition detection of tumor motion in the lung and upper abdomen using list-mode PET data: a feasibility study. J Nucl Med. 2007;48(5):758–63. doi:10.2967/jnumed.106.035279.PubMedCrossRef Bundschuh RA, Martinez-Moeller A, Essler M, Martinez MJ, Nekolla SG, Ziegler SI, et al. Postacquisition detection of tumor motion in the lung and upper abdomen using list-mode PET data: a feasibility study. J Nucl Med. 2007;48(5):758–63. doi:10.​2967/​jnumed.​106.​035279.PubMedCrossRef
15.
go back to reference Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med. 2002;43(7):876–81.PubMed Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med. 2002;43(7):876–81.PubMed
17.
go back to reference Okubo M, Nishimura Y, Nakamatsu K, Okumura M, Shibata T, Kanamori S, et al. Radiation treatment planning using positron emission and computed tomography for lung and pharyngeal cancers: a multiple-threshold method for [(18)F]fluoro-2-deoxyglucose activity. Int J Radiat Oncol Biol Phys. 2010;77(2):350–6. doi:10.1016/j.ijrobp.2009.05.025.PubMedCrossRef Okubo M, Nishimura Y, Nakamatsu K, Okumura M, Shibata T, Kanamori S, et al. Radiation treatment planning using positron emission and computed tomography for lung and pharyngeal cancers: a multiple-threshold method for [(18)F]fluoro-2-deoxyglucose activity. Int J Radiat Oncol Biol Phys. 2010;77(2):350–6. doi:10.​1016/​j.​ijrobp.​2009.​05.​025.PubMedCrossRef
Metadata
Title
Dynamic sequence respiratory gated perfusion pulmonary SPECT without external tracking device
Authors
Kenta Sakaguchi
Makoto Hosono
Masakazu Otsuka
Kohei Hanaoka
Kimio Usami
Tatsuro Uto
Kazunari Ishii
Publication date
01-01-2013
Publisher
Springer Japan
Published in
Annals of Nuclear Medicine / Issue 1/2013
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-012-0658-4

Other articles of this Issue 1/2013

Annals of Nuclear Medicine 1/2013 Go to the issue