Skip to main content
Top
Published in: European Radiology 11/2022

12-05-2022 | Musculoskeletal

A handbook for beginners in skeletal muscle diffusion tensor imaging: physical basis and technical adjustments

Authors: Teodoro Martín-Noguerol, Rafael Barousse, Daniel E. Wessell, Ignacio Rossi, Antonio Luna

Published in: European Radiology | Issue 11/2022

Login to get access

Abstract

Magnetic resonance imaging (MRI) of skeletal muscle is routinely performed using morphological sequences to acquire anatomical information. Recently, there is an increasing interest in applying advanced MRI techniques that provide pathophysiologic information for skeletal muscle evaluation to complement standard morphologic information. Among these advanced techniques, diffusion tensor imaging (DTI) has emerged as a potential tool to explore muscle microstructure. DTI can noninvasively assess the movement of water molecules in well-organized tissues with anisotropic diffusion, such as skeletal muscle. The acquisition of DTI studies for skeletal muscle assessment requires specific technical adjustments. Besides, knowledge of DTI physical basis and skeletal muscle physiopathology facilitates the evaluation of this advanced sequence and both image and parameter interpretation. Parameters derived from DTI provide a quantitative assessment of muscle microstructure with potential to become imaging biomarkers of normal and pathological skeletal muscle.

Key Points

• Diffusion tensor imaging (DTI) allows to evaluate the three-dimensional movement of water molecules inside biological tissues.
• The skeletal muscle structure makes it suitable for being evaluated with DTI.
• Several technical adjustments have to be considered for obtaining robust and reproducible DTI studies for skeletal muscle assessment, minimizing potential artifacts.
Appendix
Available only for authorised users
Literature
1.
go back to reference Blemker SS, Asakawa DS, Gold GE, Delp SL (2007) Image-based musculoskeletal modeling: applications, advances, and future opportunities. J Magn Reson Imaging 25:441–451 Blemker SS, Asakawa DS, Gold GE, Delp SL (2007) Image-based musculoskeletal modeling: applications, advances, and future opportunities. J Magn Reson Imaging 25:441–451
2.
go back to reference Koltzenburg M, Yousry T (2007) Magnetic resonance imaging of skeletal muscle. Curr Opin Neurol 20:595–599 Koltzenburg M, Yousry T (2007) Magnetic resonance imaging of skeletal muscle. Curr Opin Neurol 20:595–599
3.
go back to reference Damon BM, Froeling M, Buck AKW et al (2017) Skeletal muscle diffusion tensor-MRI fiber tracking: rationale, data acquisition and analysis methods, applications and future directions. NMR Biomed. 30 Damon BM, Froeling M, Buck AKW et al (2017) Skeletal muscle diffusion tensor-MRI fiber tracking: rationale, data acquisition and analysis methods, applications and future directions. NMR Biomed. 30
5.
go back to reference Fouré A, Ogier AC, Le Troter A et al (2018) Diffusion properties and 3D architecture of human lower leg muscles assessed with ultra-high-field-strength diffusion-tensor MR imaging and tractography: reproducibility and sensitivity to sex difference and intramuscular variability. Radiology 287:592–607. https://doi.org/10.1148/radiol.2017171330CrossRef Fouré A, Ogier AC, Le Troter A et al (2018) Diffusion properties and 3D architecture of human lower leg muscles assessed with ultra-high-field-strength diffusion-tensor MR imaging and tractography: reproducibility and sensitivity to sex difference and intramuscular variability. Radiology 287:592–607. https://​doi.​org/​10.​1148/​radiol.​2017171330CrossRef
10.
go back to reference Duarte A, Ruiz A, Ferizi U et al (2019) Diffusion tensor imaging of articular cartilage using a navigated radial imaging spin-echo diffusion (RAISED) sequence. Eur Radiol 29:2598–2607 Duarte A, Ruiz A, Ferizi U et al (2019) Diffusion tensor imaging of articular cartilage using a navigated radial imaging spin-echo diffusion (RAISED) sequence. Eur Radiol 29:2598–2607
12.
go back to reference Fouré A, Ogier AC, Le Troter A et al (2018) Diffusion properties and 3D architecture of human lower leg muscles assessed with ultra-high-field-strength diffusion-tensor MR imaging and tractography: reproducibility and sensitivity to sex difference and intramuscular variability. Radiology 287:592–607. https://doi.org/10.1148/radiol.2017171330CrossRef Fouré A, Ogier AC, Le Troter A et al (2018) Diffusion properties and 3D architecture of human lower leg muscles assessed with ultra-high-field-strength diffusion-tensor MR imaging and tractography: reproducibility and sensitivity to sex difference and intramuscular variability. Radiology 287:592–607. https://​doi.​org/​10.​1148/​radiol.​2017171330CrossRef
13.
go back to reference Oudeman J, Nederveen AJ, Strijkers GJ et al (2016) Techniques and applications of skeletal muscle diffusion tensor imaging: a review. J Magn Reson Imaging 43:773–788 Oudeman J, Nederveen AJ, Strijkers GJ et al (2016) Techniques and applications of skeletal muscle diffusion tensor imaging: a review. J Magn Reson Imaging 43:773–788
16.
go back to reference Wang F, Wu C, Sun C et al (2018) Simultaneous multislice accelerated diffusion tensor imaging of thigh muscles in myositis. AJR Am J Roentgenol 211:861–866 Wang F, Wu C, Sun C et al (2018) Simultaneous multislice accelerated diffusion tensor imaging of thigh muscles in myositis. AJR Am J Roentgenol 211:861–866
18.
19.
go back to reference Karampinos DC, Banerjee S, King KF et al (2012) Considerations in high-resolution skeletal muscle diffusion tensor imaging using single-shot echo planar imaging with stimulated-echo preparation and sensitivity encoding. NMR Biomed 25:766–778. https://doi.org/10.1002/nbm.1791CrossRef Karampinos DC, Banerjee S, King KF et al (2012) Considerations in high-resolution skeletal muscle diffusion tensor imaging using single-shot echo planar imaging with stimulated-echo preparation and sensitivity encoding. NMR Biomed 25:766–778. https://​doi.​org/​10.​1002/​nbm.​1791CrossRef
21.
go back to reference Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S (2013) Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 45:2191–2199 Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S (2013) Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 45:2191–2199
23.
go back to reference Damon BM, Buck AKW, Ding Z (2011) Diffusion-tensor MRI-based skeletal muscle fiber tracking. Imaging Med. 3:675–687CrossRef Damon BM, Buck AKW, Ding Z (2011) Diffusion-tensor MRI-based skeletal muscle fiber tracking. Imaging Med. 3:675–687CrossRef
25.
go back to reference Bammer R, Acar B, Moseley ME (2003) In vivo MR tractography using diffusion imaging. Eur J Radiol 45:223–234CrossRef Bammer R, Acar B, Moseley ME (2003) In vivo MR tractography using diffusion imaging. Eur J Radiol 45:223–234CrossRef
27.
go back to reference Mukherjee P, Berman JI, Chung SW et al (2008) Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol 29:632–641 Mukherjee P, Berman JI, Chung SW et al (2008) Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol 29:632–641
32.
go back to reference Ni H, Kavcic V, Zhu T et al (2006) Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. AJNR Am J Neuroradiol 27:1776–1781 Ni H, Kavcic V, Zhu T et al (2006) Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. AJNR Am J Neuroradiol 27:1776–1781
38.
go back to reference Handsfield GG, Bolsterlee B, Inouye JM, Herbert RD, Besier TF, Fernandez JW (2017) Determining skeletal muscle architecture with Laplacian simulations: a comparison with diffusion tensor imaging. Biomech Model Mechanobiol 16:1845–1855. https://doi.org/10.1007/s10237-017-0923-5 Handsfield GG, Bolsterlee B, Inouye JM, Herbert RD, Besier TF, Fernandez JW (2017) Determining skeletal muscle architecture with Laplacian simulations: a comparison with diffusion tensor imaging. Biomech Model Mechanobiol 16:1845–1855. https://​doi.​org/​10.​1007/​s10237-017-0923-5
40.
go back to reference Davids M, Guérin B, vom Endt A, et al (2019) Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations. Magn Reson Med 81:686–701. https://doi.org/10.1002/mrm.27382 Davids M, Guérin B, vom Endt A, et al (2019) Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations. Magn Reson Med 81:686–701. https://​doi.​org/​10.​1002/​mrm.​27382
43.
go back to reference Sigmund EE, Novikov DS, Sui D et al (2014) Time-dependent diffusion in skeletal muscle with the random permeable barrier model (RPBM): application to normal controls and chronic exertional compartment syndrome patients NIH Public Access. NMR Biomed 27:519–528. https://doi.org/10.1002/nbm.3087CrossRef Sigmund EE, Novikov DS, Sui D et al (2014) Time-dependent diffusion in skeletal muscle with the random permeable barrier model (RPBM): application to normal controls and chronic exertional compartment syndrome patients NIH Public Access. NMR Biomed 27:519–528. https://​doi.​org/​10.​1002/​nbm.​3087CrossRef
Metadata
Title
A handbook for beginners in skeletal muscle diffusion tensor imaging: physical basis and technical adjustments
Authors
Teodoro Martín-Noguerol
Rafael Barousse
Daniel E. Wessell
Ignacio Rossi
Antonio Luna
Publication date
12-05-2022
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 11/2022
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08837-w

Other articles of this Issue 11/2022

European Radiology 11/2022 Go to the issue