Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 3/2012

01-03-2012 | Original article

A gynecologic oncology group phase II trial of two p53 peptide vaccine approaches: subcutaneous injection and intravenous pulsed dendritic cells in high recurrence risk ovarian cancer patients

Authors: Osama E. Rahma, Ed Ashtar, Malgorzata Czystowska, Marta E. Szajnik, Eva Wieckowski, Sarah Bernstein, Vincent E. Herrin, Mortada A. Shams, Seth M. Steinberg, Maria Merino, William Gooding, Carmen Visus, Albert B. DeLeo, Judith K. Wolf, Jeffrey G. Bell, Jay A. Berzofsky, Theresa L. Whiteside, Samir N. Khleif

Published in: Cancer Immunology, Immunotherapy | Issue 3/2012

Login to get access

Abstract

Purpose

Peptide antigens have been administered by different approaches as cancer vaccine therapy, including direct injection or pulsed onto dendritic cells; however, the optimal delivery method is still debatable. In this study, we describe the immune response elicited by two vaccine approaches using the wild-type (wt) p53 vaccine.

Experimental design

Twenty-one HLA-A2.1 patients with stage III, IV, or recurrent ovarian cancer overexpressing the p53 protein with no evidence of disease were treated in two cohorts. Arm A received SC wt p53:264-272 peptide admixed with Montanide and GM-CSF. Arm B received wt p53:264-272 peptide-pulsed dendritic cells IV. Interleukin-2 (IL-2) was administered to both cohorts in alternative cycles.

Results

Nine of 13 patients (69%) in arm A and 5 of 6 patients (83%) in arm B developed an immunologic response as determined by ELISPOT and tetramer assays. The vaccine caused no serious systemic side effects. IL-2 administration resulted in grade 3 and 4 toxicities in both arms and directly induced the expansion of T regulatory cells. The median overall survival was 40.8 and 29.6 months for arm A and B, respectively; the median progression-free survival was 4.2 and. 8.7 months, respectively.

Conclusion

We found that using either vaccination approach generates comparable specific immune responses against the p53 peptide with minimal toxicity. Accordingly, our findings suggest that the use of less demanding SC approach may be as effective. Furthermore, the use of low-dose SC IL-2 as an adjuvant might have interfered with the immune response. Therefore, it may not be needed in future trials.
Appendix
Available only for authorised users
Literature
1.
go back to reference Khleif SN, Abrams SI, Hamilton JM et al (1999) A phase I vaccine trial with peptides reflecting ras oncogene mutations of solid tumors. J Immunother 22:155–165PubMedCrossRef Khleif SN, Abrams SI, Hamilton JM et al (1999) A phase I vaccine trial with peptides reflecting ras oncogene mutations of solid tumors. J Immunother 22:155–165PubMedCrossRef
2.
go back to reference Toubaji A, Achtar M, Provenzano M et al (2008) Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol Immunother 57:1413–1420PubMedCrossRef Toubaji A, Achtar M, Provenzano M et al (2008) Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol Immunother 57:1413–1420PubMedCrossRef
3.
go back to reference Phan GQ, Touloukian CE, Yang JC et al (2003) Immunization of patients with metastatic melanoma using both class I- and class II-restricted peptides from melanoma-associated antigens. J Immunother 26:349–356PubMedCrossRef Phan GQ, Touloukian CE, Yang JC et al (2003) Immunization of patients with metastatic melanoma using both class I- and class II-restricted peptides from melanoma-associated antigens. J Immunother 26:349–356PubMedCrossRef
5.
go back to reference Bubenik J (2001) Genetically engineered dendritic cell-based cancer vaccines (review). Int J Oncol 18:475–478PubMed Bubenik J (2001) Genetically engineered dendritic cell-based cancer vaccines (review). Int J Oncol 18:475–478PubMed
6.
go back to reference Schadendorf D, Ugurel S, Schuler-Thurner B et al (2006) Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol 17:563–570PubMedCrossRef Schadendorf D, Ugurel S, Schuler-Thurner B et al (2006) Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol 17:563–570PubMedCrossRef
7.
go back to reference Slingluff CL Jr, Petroni GR, Yamshchikov GV et al (2003) Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol 21:4016–4026PubMedCrossRef Slingluff CL Jr, Petroni GR, Yamshchikov GV et al (2003) Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol 21:4016–4026PubMedCrossRef
8.
go back to reference Lu W, Arraes LC, Ferreira WT, Andrieu JM (2004) Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. Nat Med 10:1359–1365PubMedCrossRef Lu W, Arraes LC, Ferreira WT, Andrieu JM (2004) Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. Nat Med 10:1359–1365PubMedCrossRef
9.
go back to reference Su Z, Dannull J, Yang BK et al (2005) Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol 174:3798–3807PubMed Su Z, Dannull J, Yang BK et al (2005) Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol 174:3798–3807PubMed
10.
go back to reference Heiser A, Coleman D, Dannull J et al (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 109:409–417PubMed Heiser A, Coleman D, Dannull J et al (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 109:409–417PubMed
11.
go back to reference Su Z, Dannull J, Heiser A et al (2003) Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res 63:2127–2133PubMed Su Z, Dannull J, Heiser A et al (2003) Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res 63:2127–2133PubMed
12.
go back to reference Dannull J, Su Z, Rizzieri D et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633PubMedCrossRef Dannull J, Su Z, Rizzieri D et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633PubMedCrossRef
13.
go back to reference Gabrilovich DI, Ciernik IF, Carbone DP (1996) Dendritic cells in antitumor immune responses. I. Defective antigen presentation in tumor-bearing hosts. Cell Immunol 170:101–110PubMedCrossRef Gabrilovich DI, Ciernik IF, Carbone DP (1996) Dendritic cells in antitumor immune responses. I. Defective antigen presentation in tumor-bearing hosts. Cell Immunol 170:101–110PubMedCrossRef
14.
go back to reference Gabrilovich DI, Nadaf S, Corak J, Berzofsky JA, Carbone DP (1996) Dendritic cells in antitumor immune responses. II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors. Cell Immunol 170:111–119PubMedCrossRef Gabrilovich DI, Nadaf S, Corak J, Berzofsky JA, Carbone DP (1996) Dendritic cells in antitumor immune responses. II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors. Cell Immunol 170:111–119PubMedCrossRef
15.
go back to reference Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP (1997) Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 3:483–490PubMed Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP (1997) Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 3:483–490PubMed
16.
go back to reference Kichler-Lakomy C, Budinsky AC, Wolfram R et al (2006) Deficiencies in phenotype expression and function of dendritic cells from patients with early breast cancer. Eur J Med Res 11:7–12PubMed Kichler-Lakomy C, Budinsky AC, Wolfram R et al (2006) Deficiencies in phenotype expression and function of dendritic cells from patients with early breast cancer. Eur J Med Res 11:7–12PubMed
17.
go back to reference Schuler G, Schuler-Thurner B, Steinman RM (2003) The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 15:138–147PubMedCrossRef Schuler G, Schuler-Thurner B, Steinman RM (2003) The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 15:138–147PubMedCrossRef
18.
go back to reference Lesterhuis WJ, de Vries IJ, Schuurhuis DH et al (2006) Vaccination of colorectal cancer patients with CEA-loaded dendritic cells: antigen-specific T cell responses in DTH skin tests. Ann Oncol 17:974–980PubMedCrossRef Lesterhuis WJ, de Vries IJ, Schuurhuis DH et al (2006) Vaccination of colorectal cancer patients with CEA-loaded dendritic cells: antigen-specific T cell responses in DTH skin tests. Ann Oncol 17:974–980PubMedCrossRef
19.
go back to reference Takahashi H, Nakagawa Y, Yokomuro K, Berzofsky JA (1993) Induction of CD8+ cytotoxic T lymphocytes by immunization with syngeneic irradiated HIV-1 envelope derived peptide-pulsed dendritic cells. Int Immunol 5:849–857PubMedCrossRef Takahashi H, Nakagawa Y, Yokomuro K, Berzofsky JA (1993) Induction of CD8+ cytotoxic T lymphocytes by immunization with syngeneic irradiated HIV-1 envelope derived peptide-pulsed dendritic cells. Int Immunol 5:849–857PubMedCrossRef
20.
go back to reference Sakakura K, Chikamatsu K, Furuya N, Appella E, Whiteside TL, Deleo AB (2007) Toward the development of multi-epitope p53 cancer vaccines: an in vitro assessment of CD8(+) T cell responses to HLA class I-restricted wild-type sequence p53 peptides. Clin Immunol 125:43–51PubMedCrossRef Sakakura K, Chikamatsu K, Furuya N, Appella E, Whiteside TL, Deleo AB (2007) Toward the development of multi-epitope p53 cancer vaccines: an in vitro assessment of CD8(+) T cell responses to HLA class I-restricted wild-type sequence p53 peptides. Clin Immunol 125:43–51PubMedCrossRef
21.
go back to reference Svane IM, Pedersen AE, Johnsen HE et al (2004) Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol Immunother 53:633–641PubMedCrossRef Svane IM, Pedersen AE, Johnsen HE et al (2004) Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol Immunother 53:633–641PubMedCrossRef
22.
go back to reference Svane IM, Pedersen AE, Johansen JS et al (2007) Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers. Cancer Immunol Immunother 56:1485–1499PubMedCrossRef Svane IM, Pedersen AE, Johansen JS et al (2007) Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers. Cancer Immunol Immunother 56:1485–1499PubMedCrossRef
23.
go back to reference DeLeo AB, Whiteside TL (2008) Development of multi-epitope vaccines targeting wild-type sequence p53 peptides. Expert Rev Vaccines 7:1031–1040PubMedCrossRef DeLeo AB, Whiteside TL (2008) Development of multi-epitope vaccines targeting wild-type sequence p53 peptides. Expert Rev Vaccines 7:1031–1040PubMedCrossRef
24.
go back to reference Rosenberg SA, Yang JC, Schwartzentruber DJ et al (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4:321–327PubMedCrossRef Rosenberg SA, Yang JC, Schwartzentruber DJ et al (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4:321–327PubMedCrossRef
25.
go back to reference Lotem M, Shiloni E, Pappo I et al (2004) Interleukin-2 improves tumour response to DNP-modified autologous vaccine for the treatment of metastatic malignant melanoma. Br J Cancer 90:773–780PubMedCrossRef Lotem M, Shiloni E, Pappo I et al (2004) Interleukin-2 improves tumour response to DNP-modified autologous vaccine for the treatment of metastatic malignant melanoma. Br J Cancer 90:773–780PubMedCrossRef
26.
go back to reference Qian J, Dong Y, Pang YY et al (2006) Combined prophylactic and therapeutic cancer vaccine: enhancing CTL responses to HPV16 E2 using a chimeric VLP in HLA-A2 mice. Int J Cancer 118:3022–3029PubMedCrossRef Qian J, Dong Y, Pang YY et al (2006) Combined prophylactic and therapeutic cancer vaccine: enhancing CTL responses to HPV16 E2 using a chimeric VLP in HLA-A2 mice. Int J Cancer 118:3022–3029PubMedCrossRef
27.
go back to reference Toubaji A, Hill S, Terabe M et al (2007) The combination of GM-CSF and IL-2 as local adjuvant shows synergy in enhancing peptide vaccines and provides long term tumor protection. Vaccine 25:5882–5891PubMedCrossRef Toubaji A, Hill S, Terabe M et al (2007) The combination of GM-CSF and IL-2 as local adjuvant shows synergy in enhancing peptide vaccines and provides long term tumor protection. Vaccine 25:5882–5891PubMedCrossRef
28.
go back to reference Weber J, Sondak VK, Scotland R et al (2003) Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected Stage II melanoma. Cancer 97:186–200PubMedCrossRef Weber J, Sondak VK, Scotland R et al (2003) Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected Stage II melanoma. Cancer 97:186–200PubMedCrossRef
29.
go back to reference Dranoff G, Jaffee E, Lazenby A et al (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543PubMedCrossRef Dranoff G, Jaffee E, Lazenby A et al (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543PubMedCrossRef
30.
go back to reference Whiteside T (2005) ELISPOT assays. Assessment of cellular immune responses to anti-cancer vaccines. In: Nagorsen D, Marincola FM (eds.) Analyzing T cell responses. Springer, Dordrecht, pp 143–156 Whiteside T (2005) ELISPOT assays. Assessment of cellular immune responses to anti-cancer vaccines. In: Nagorsen D, Marincola FM (eds.) Analyzing T cell responses. Springer, Dordrecht, pp 143–156
31.
go back to reference Strauss L, Bergmann C, Gooding W, Johnson JT, Whiteside TL (2007) The frequency and suppressor function of CD4+ CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13:6301–6311PubMedCrossRef Strauss L, Bergmann C, Gooding W, Johnson JT, Whiteside TL (2007) The frequency and suppressor function of CD4+ CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13:6301–6311PubMedCrossRef
32.
go back to reference Bergmann C, Strauss L, Wang Y et al (2008) T regulatory type 1 cells in squamous cell carcinoma of the head and neck: mechanisms of suppression and expansion in advanced disease. Clin Cancer Res 14:3706–3715PubMedCrossRef Bergmann C, Strauss L, Wang Y et al (2008) T regulatory type 1 cells in squamous cell carcinoma of the head and neck: mechanisms of suppression and expansion in advanced disease. Clin Cancer Res 14:3706–3715PubMedCrossRef
33.
go back to reference Markovic SN, Suman VJ, Ingle JN et al (2006) Peptide vaccination of patients with metastatic melanoma: improved clinical outcome in patients demonstrating effective immunization. Am J Clin Oncol 29:352–360PubMedCrossRef Markovic SN, Suman VJ, Ingle JN et al (2006) Peptide vaccination of patients with metastatic melanoma: improved clinical outcome in patients demonstrating effective immunization. Am J Clin Oncol 29:352–360PubMedCrossRef
34.
go back to reference Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 193:233–238PubMedCrossRef Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 193:233–238PubMedCrossRef
35.
go back to reference Lechler R, Ng WF, Steinman RM (2001) Dendritic cells in transplantation—friend or foe? Immunity 14:357–368PubMedCrossRef Lechler R, Ng WF, Steinman RM (2001) Dendritic cells in transplantation—friend or foe? Immunity 14:357–368PubMedCrossRef
36.
go back to reference Cools N, Van Tendeloo VF, Smits EL et al (2008) Immunosuppression induced by immature dendritic cells is mediated by TGF-beta/IL-10 double-positive CD4+ regulatory T cells. J Cell Mol Med 12:690–700PubMedCrossRef Cools N, Van Tendeloo VF, Smits EL et al (2008) Immunosuppression induced by immature dendritic cells is mediated by TGF-beta/IL-10 double-positive CD4+ regulatory T cells. J Cell Mol Med 12:690–700PubMedCrossRef
37.
go back to reference Roncarolo MG, Levings MK, Traversari C (2001) Differentiation of T regulatory cells by immature dendritic cells. J Exp Med 193:F5–F9PubMedCrossRef Roncarolo MG, Levings MK, Traversari C (2001) Differentiation of T regulatory cells by immature dendritic cells. J Exp Med 193:F5–F9PubMedCrossRef
38.
go back to reference Jonuleit H, Giesecke-Tuettenberg A, Tuting T et al (2001) A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 93:243–251PubMedCrossRef Jonuleit H, Giesecke-Tuettenberg A, Tuting T et al (2001) A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 93:243–251PubMedCrossRef
39.
go back to reference Maier T, Tun-Kyi A, Tassis A et al (2003) Vaccination of patients with cutaneous T-cell lymphoma using intranodal injection of autologous tumor-lysate-pulsed dendritic cells. Blood 102:2338–2344PubMedCrossRef Maier T, Tun-Kyi A, Tassis A et al (2003) Vaccination of patients with cutaneous T-cell lymphoma using intranodal injection of autologous tumor-lysate-pulsed dendritic cells. Blood 102:2338–2344PubMedCrossRef
40.
go back to reference Bedrosian I, Mick R, Xu S et al (2003) Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients. J Clin Oncol 21:3826–3835PubMedCrossRef Bedrosian I, Mick R, Xu S et al (2003) Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients. J Clin Oncol 21:3826–3835PubMedCrossRef
41.
go back to reference de Vries IJ, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413PubMedCrossRef de Vries IJ, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413PubMedCrossRef
42.
go back to reference Slingluff CL Jr, Petroni GR, Yamshchikov GV et al (2004) Immunologic and clinical outcomes of vaccination with a multiepitope melanoma peptide vaccine plus low-dose interleukin-2 administered either concurrently or on a delayed schedule. J Clin Oncol 22:4474–4485PubMedCrossRef Slingluff CL Jr, Petroni GR, Yamshchikov GV et al (2004) Immunologic and clinical outcomes of vaccination with a multiepitope melanoma peptide vaccine plus low-dose interleukin-2 administered either concurrently or on a delayed schedule. J Clin Oncol 22:4474–4485PubMedCrossRef
43.
go back to reference Escobar A, Lopez M, Serrano A et al (2005) Dendritic cell immunizations alone or combined with low doses of interleukin-2 induce specific immune responses in melanoma patients. Clin Exp Immunol 142:555–668PubMed Escobar A, Lopez M, Serrano A et al (2005) Dendritic cell immunizations alone or combined with low doses of interleukin-2 induce specific immune responses in melanoma patients. Clin Exp Immunol 142:555–668PubMed
44.
go back to reference Wojtowicz ME, Hamilton MJ, Benrnstein S et al (2000) Clinical trial of mutant ras peptide vaccination along with IL-2 or GM-CSF. Proc Am Soc Clin Oncol 19:463a (abstr 1818) Wojtowicz ME, Hamilton MJ, Benrnstein S et al (2000) Clinical trial of mutant ras peptide vaccination along with IL-2 or GM-CSF. Proc Am Soc Clin Oncol 19:463a (abstr 1818)
45.
go back to reference Lemoine FM, Cherai M, Giverne C et al (2009) Massive expansion of regulatory T-cells following interleukin 2 treatment during a phase I-II dendritic cell-based immunotherapy of metastatic renal cancer. Int J Oncol 35:569–581PubMedCrossRef Lemoine FM, Cherai M, Giverne C et al (2009) Massive expansion of regulatory T-cells following interleukin 2 treatment during a phase I-II dendritic cell-based immunotherapy of metastatic renal cancer. Int J Oncol 35:569–581PubMedCrossRef
46.
go back to reference Green DS, Dalgleish AG, Belonwu N, Fischer MD, Bodman-Smith MD (2008) Topical imiquimod and intralesional interleukin-2 increase activated lymphocytes and restore the Th1/Th2 balance in patients with metastatic melanoma. Br J Dermatol 159:606–614PubMedCrossRef Green DS, Dalgleish AG, Belonwu N, Fischer MD, Bodman-Smith MD (2008) Topical imiquimod and intralesional interleukin-2 increase activated lymphocytes and restore the Th1/Th2 balance in patients with metastatic melanoma. Br J Dermatol 159:606–614PubMedCrossRef
47.
go back to reference Simon RM, Steinberg SM, Hamilton M et al (2001) Clinical trial designs for the early clinical development of therapeutic cancer vaccines. J Clin Oncol 19:1848–1854PubMed Simon RM, Steinberg SM, Hamilton M et al (2001) Clinical trial designs for the early clinical development of therapeutic cancer vaccines. J Clin Oncol 19:1848–1854PubMed
Metadata
Title
A gynecologic oncology group phase II trial of two p53 peptide vaccine approaches: subcutaneous injection and intravenous pulsed dendritic cells in high recurrence risk ovarian cancer patients
Authors
Osama E. Rahma
Ed Ashtar
Malgorzata Czystowska
Marta E. Szajnik
Eva Wieckowski
Sarah Bernstein
Vincent E. Herrin
Mortada A. Shams
Seth M. Steinberg
Maria Merino
William Gooding
Carmen Visus
Albert B. DeLeo
Judith K. Wolf
Jeffrey G. Bell
Jay A. Berzofsky
Theresa L. Whiteside
Samir N. Khleif
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 3/2012
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-011-1100-9

Other articles of this Issue 3/2012

Cancer Immunology, Immunotherapy 3/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine