Skip to main content
Top

29-03-2023 | REVIEW

A guide to appropriately planning and conducting meta-analyses: part 2—effect size estimation, heterogeneity and analytic approaches

Authors: Kyle N. Kunze, Jeffrey Kay, Ayoosh Pareek, Jari Dahmen, Benedict U. Nwachukwu, Riley J. Williams III, Jon Karlsson, Darren de SA

Published in: Knee Surgery, Sports Traumatology, Arthroscopy

Login to get access

Abstract

Meta-analyses by definition are a subtype of systematic review intended to quantitatively assess the strength of evidence present on an intervention or treatment. Such analyses may use individual-level data or aggregate data to produce a point estimate of an effect, also known as the combined effect, and measure precision of the calculated estimate. The current article will review several important considerations during the analytic phase of a meta-analysis, including selection of effect estimators, heterogeneity and various sub-types of meta-analytic approaches.
Literature
2.
go back to reference Chaimani A, Mavridis D, Salanti G (2014) A hands-on practical tutorial on performing meta-analysis with Stata. Evid Based Ment Health 17:111–116CrossRefPubMed Chaimani A, Mavridis D, Salanti G (2014) A hands-on practical tutorial on performing meta-analysis with Stata. Evid Based Ment Health 17:111–116CrossRefPubMed
3.
go back to reference Chung Y, Rabe-Hesketh S, Dorie V, Gelman A, Liu J (2013) A Nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika 78:685–709CrossRefPubMed Chung Y, Rabe-Hesketh S, Dorie V, Gelman A, Liu J (2013) A Nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika 78:685–709CrossRefPubMed
4.
7.
go back to reference Higgins JP, Thompson SG (2004) Controlling the risk of spurious findings from meta-regression. Stat Med 23:1663–1682CrossRefPubMed Higgins JP, Thompson SG (2004) Controlling the risk of spurious findings from meta-regression. Stat Med 23:1663–1682CrossRefPubMed
10.
go back to reference Higgins JPTTJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (2019) Cochrane handbook for systematic reviews of Interventions version 6.0. Undertaking network meta-analyses. Wiley, New York, pp 285–320 Higgins JPTTJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (2019) Cochrane handbook for systematic reviews of Interventions version 6.0. Undertaking network meta-analyses. Wiley, New York, pp 285–320
12.
go back to reference Ioannidis JP (2008) Interpretation of tests of heterogeneity and bias in meta-analysis. J Eval Clin Pract 14:951–957CrossRefPubMed Ioannidis JP (2008) Interpretation of tests of heterogeneity and bias in meta-analysis. J Eval Clin Pract 14:951–957CrossRefPubMed
13.
go back to reference Langan D (2022) Assessing heterogeneity in random-effects meta-analysis. Methods Mol Biol 2345:67–89CrossRefPubMed Langan D (2022) Assessing heterogeneity in random-effects meta-analysis. Methods Mol Biol 2345:67–89CrossRefPubMed
14.
go back to reference Lee CH, Cook S, Lee JS, Han B (2016) Comparison of two meta-analysis methods: inverse-variance-weighted average and weighted sum of Z-scores. Genomics Inform 14:173–180CrossRefPubMedPubMedCentral Lee CH, Cook S, Lee JS, Han B (2016) Comparison of two meta-analysis methods: inverse-variance-weighted average and weighted sum of Z-scores. Genomics Inform 14:173–180CrossRefPubMedPubMedCentral
15.
go back to reference Leimu R, Koricheva J (2004) Cumulative meta-analysis: a new tool for detection of temporal trends and publication bias in ecology. Proc Biol Sci 271:1961–1966CrossRefPubMedPubMedCentral Leimu R, Koricheva J (2004) Cumulative meta-analysis: a new tool for detection of temporal trends and publication bias in ecology. Proc Biol Sci 271:1961–1966CrossRefPubMedPubMedCentral
16.
go back to reference Li SJ, Jiang H, Yang H, Chen W, Peng J, Sun MW et al (2015) The dilemma of heterogeneity tests in meta-analysis: a challenge from a simulation study. PLoS ONE 10:e0127538CrossRefPubMedPubMedCentral Li SJ, Jiang H, Yang H, Chen W, Peng J, Sun MW et al (2015) The dilemma of heterogeneity tests in meta-analysis: a challenge from a simulation study. PLoS ONE 10:e0127538CrossRefPubMedPubMedCentral
17.
go back to reference Lin L (2020) Comparison of four heterogeneity measures for meta-analysis. J Eval Clin Pract 26:376–384CrossRefPubMed Lin L (2020) Comparison of four heterogeneity measures for meta-analysis. J Eval Clin Pract 26:376–384CrossRefPubMed
18.
go back to reference Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748PubMed Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748PubMed
19.
go back to reference McNeish D (2016) On using bayesian methods to address small sample problems. Struct Equ Modeling 23:750–773CrossRef McNeish D (2016) On using bayesian methods to address small sample problems. Struct Equ Modeling 23:750–773CrossRef
20.
go back to reference Melsen WG, Bootsma MC, Rovers MM, Bonten MJ (2014) The effects of clinical and statistical heterogeneity on the predictive values of results from meta-analyses. Clin Microbiol Infect 20:123–129CrossRefPubMed Melsen WG, Bootsma MC, Rovers MM, Bonten MJ (2014) The effects of clinical and statistical heterogeneity on the predictive values of results from meta-analyses. Clin Microbiol Infect 20:123–129CrossRefPubMed
21.
go back to reference Miller JJ (1978) The inverse of the freeman-tukey double arcsine transformation. The Am Stat 32:138–138 Miller JJ (1978) The inverse of the freeman-tukey double arcsine transformation. The Am Stat 32:138–138
22.
go back to reference Mullen B, Muellerleile P, Bryant B (2001) Cumulative Meta-Analysis: a consideration of indicators of sufficiency and stability. Pers Soc Psychol Bull 27:1450–1462CrossRef Mullen B, Muellerleile P, Bryant B (2001) Cumulative Meta-Analysis: a consideration of indicators of sufficiency and stability. Pers Soc Psychol Bull 27:1450–1462CrossRef
23.
go back to reference Nikolakopoulou A, Mavridis D, Salanti G (2014) Demystifying fixed and random effects meta-analysis. Evid Based Ment Health 17:53–57CrossRefPubMed Nikolakopoulou A, Mavridis D, Salanti G (2014) Demystifying fixed and random effects meta-analysis. Evid Based Ment Health 17:53–57CrossRefPubMed
24.
go back to reference Poole C, Greenland S (1999) Random-effects meta-analyses are not always conservative. Am J Epidemiol 150:469–475CrossRefPubMed Poole C, Greenland S (1999) Random-effects meta-analyses are not always conservative. Am J Epidemiol 150:469–475CrossRefPubMed
28.
go back to reference Sidik K, Jonkman JN (2007) A comparison of heterogeneity variance estimators in combining results of studies. Stat Med 26:1964–1981CrossRefPubMed Sidik K, Jonkman JN (2007) A comparison of heterogeneity variance estimators in combining results of studies. Stat Med 26:1964–1981CrossRefPubMed
29.
go back to reference Tufanaru C, Munn Z, Stephenson M, Aromataris E (2015) Fixed or random effects meta-analysis? Common methodological issues in systematic reviews of effectiveness. Int J Evid Based Healthc 13:196–207CrossRefPubMed Tufanaru C, Munn Z, Stephenson M, Aromataris E (2015) Fixed or random effects meta-analysis? Common methodological issues in systematic reviews of effectiveness. Int J Evid Based Healthc 13:196–207CrossRefPubMed
30.
go back to reference Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G et al (2016) Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods 7:55–79CrossRefPubMed Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G et al (2016) Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods 7:55–79CrossRefPubMed
31.
go back to reference Viechtbauer W, Cheung MWL (2010) Outlier and influence diagnostics for meta-analysis. Res Synth Methods 1:112–125CrossRefPubMed Viechtbauer W, Cheung MWL (2010) Outlier and influence diagnostics for meta-analysis. Res Synth Methods 1:112–125CrossRefPubMed
32.
go back to reference Yoneoka D, Henmi M (2019) Clinical heterogeneity in random-effect meta-analysis: between-study boundary estimate problem. Stat Med 38:4131–4145CrossRefPubMed Yoneoka D, Henmi M (2019) Clinical heterogeneity in random-effect meta-analysis: between-study boundary estimate problem. Stat Med 38:4131–4145CrossRefPubMed
33.
go back to reference Yusuf S, Peto R, Lewis J, Collins R, Sleight P (1985) Beta blockade during and after myocardial infarction: an overview of the randomized trials. Prog Cardiovasc Dis 27:335–371CrossRefPubMed Yusuf S, Peto R, Lewis J, Collins R, Sleight P (1985) Beta blockade during and after myocardial infarction: an overview of the randomized trials. Prog Cardiovasc Dis 27:335–371CrossRefPubMed
34.
go back to reference Zou KH, O’Malley AJ, Mauri L (2007) Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 115:654–657CrossRefPubMed Zou KH, O’Malley AJ, Mauri L (2007) Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 115:654–657CrossRefPubMed
Metadata
Title
A guide to appropriately planning and conducting meta-analyses: part 2—effect size estimation, heterogeneity and analytic approaches
Authors
Kyle N. Kunze
Jeffrey Kay
Ayoosh Pareek
Jari Dahmen
Benedict U. Nwachukwu
Riley J. Williams III
Jon Karlsson
Darren de SA
Publication date
29-03-2023
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-023-07328-9