Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2014

Open Access 01-12-2014 | Research article

The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method

Authors: Joanna IntHout, John PA Ioannidis, George F Borm

Published in: BMC Medical Research Methodology | Issue 1/2014

Login to get access

Abstract

Background

The DerSimonian and Laird approach (DL) is widely used for random effects meta-analysis, but this often results in inappropriate type I error rates. The method described by Hartung, Knapp, Sidik and Jonkman (HKSJ) is known to perform better when trials of similar size are combined. However evidence in realistic situations, where one trial might be much larger than the other trials, is lacking. We aimed to evaluate the relative performance of the DL and HKSJ methods when studies of different sizes are combined and to develop a simple method to convert DL results to HKSJ results.

Methods

We evaluated the performance of the HKSJ versus DL approach in simulated meta-analyses of 2–20 trials with varying sample sizes and between-study heterogeneity, and allowing trials to have various sizes, e.g. 25% of the trials being 10-times larger than the smaller trials. We also compared the number of “positive” (statistically significant at p < 0.05) findings using empirical data of recent meta-analyses with > = 3 studies of interventions from the Cochrane Database of Systematic Reviews.

Results

The simulations showed that the HKSJ method consistently resulted in more adequate error rates than the DL method. When the significance level was 5%, the HKSJ error rates at most doubled, whereas for DL they could be over 30%. DL, and, far less so, HKSJ had more inflated error rates when the combined studies had unequal sizes and between-study heterogeneity. The empirical data from 689 meta-analyses showed that 25.1% of the significant findings for the DL method were non-significant with the HKSJ method. DL results can be easily converted into HKSJ results.

Conclusions

Our simulations showed that the HKSJ method consistently results in more adequate error rates than the DL method, especially when the number of studies is small, and can easily be applied routinely in meta-analyses. Even with the HKSJ method, extra caution is needed when there are = <5 studies of very unequal sizes.
Appendix
Available only for authorised users
Literature
1.
go back to reference DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials. 1986, 7 (3): 177-188. 10.1016/0197-2456(86)90046-2.CrossRefPubMed DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials. 1986, 7 (3): 177-188. 10.1016/0197-2456(86)90046-2.CrossRefPubMed
2.
go back to reference The Cochrane Collaboration: Review Manager (RevMan) 5.1.4. 2011, Copenhagen: The Nordic Cochrane Centre The Cochrane Collaboration: Review Manager (RevMan) 5.1.4. 2011, Copenhagen: The Nordic Cochrane Centre
3.
go back to reference Borenstein M, Hedges L, Higgins J, Rothstein H: Comprehensive Meta-analysis Version 2. 2005, Englewood NJ: Biostat Borenstein M, Hedges L, Higgins J, Rothstein H: Comprehensive Meta-analysis Version 2. 2005, Englewood NJ: Biostat
4.
go back to reference Hartung J: An alternative method for meta-analysis. Biom J. 1999, 901-916. Hartung J: An alternative method for meta-analysis. Biom J. 1999, 901-916.
5.
go back to reference Hartung J, Knapp G: A refined method for the meta analysis of controlled clinical trials with binary outcome. Stat Med. 2001, 20 (24): 3875-3889. 10.1002/sim.1009.CrossRefPubMed Hartung J, Knapp G: A refined method for the meta analysis of controlled clinical trials with binary outcome. Stat Med. 2001, 20 (24): 3875-3889. 10.1002/sim.1009.CrossRefPubMed
6.
go back to reference Hartung J, Knapp G: On tests of the overall treatment effect in meta analysis with normally distributed responses. Stat Med. 2001, 20 (12): 1771-1782. 10.1002/sim.791.CrossRefPubMed Hartung J, Knapp G: On tests of the overall treatment effect in meta analysis with normally distributed responses. Stat Med. 2001, 20 (12): 1771-1782. 10.1002/sim.791.CrossRefPubMed
7.
go back to reference Follmann DA, Proschan MA: Valid inference in random effects meta-analysis. Biometrics. 1999, 55 (3): 732-737. 10.1111/j.0006-341X.1999.00732.x.CrossRefPubMed Follmann DA, Proschan MA: Valid inference in random effects meta-analysis. Biometrics. 1999, 55 (3): 732-737. 10.1111/j.0006-341X.1999.00732.x.CrossRefPubMed
8.
go back to reference Hartung J, Makambi KH: Reducing the number of unjustified significant results in meta-analysis. Commun Stat Simul Comput. 2003, 32 (4): 1179-1190. 10.1081/SAC-120023884.CrossRef Hartung J, Makambi KH: Reducing the number of unjustified significant results in meta-analysis. Commun Stat Simul Comput. 2003, 32 (4): 1179-1190. 10.1081/SAC-120023884.CrossRef
9.
go back to reference Makambi KH: The effect of the heterogeneity variance estimator on some tests of treatment efficacy. J Biopharm Stat. 2004, 14 (2): 439-449. 10.1081/BIP-120037191.CrossRefPubMed Makambi KH: The effect of the heterogeneity variance estimator on some tests of treatment efficacy. J Biopharm Stat. 2004, 14 (2): 439-449. 10.1081/BIP-120037191.CrossRefPubMed
10.
go back to reference Sidik K, Jonkman JN: Robust variance estimation for random effects meta-analysis. Comput Stat Data Anal. 2006, 50 (12): 3681-3701. 10.1016/j.csda.2005.07.019.CrossRef Sidik K, Jonkman JN: Robust variance estimation for random effects meta-analysis. Comput Stat Data Anal. 2006, 50 (12): 3681-3701. 10.1016/j.csda.2005.07.019.CrossRef
11.
go back to reference Sidik K, Jonkman JN: A simple confidence interval for meta-analysis. Stat Med. 2002, 21 (21): 3153-3159. 10.1002/sim.1262.CrossRefPubMed Sidik K, Jonkman JN: A simple confidence interval for meta-analysis. Stat Med. 2002, 21 (21): 3153-3159. 10.1002/sim.1262.CrossRefPubMed
12.
go back to reference Sidik K, Jonkman JN: On constructing confidence intervals for a standardized mean difference in meta-analysis. Commun Stat Simul Comput. 2003, 32 (4): 1191-1203. 10.1081/SAC-120023885.CrossRef Sidik K, Jonkman JN: On constructing confidence intervals for a standardized mean difference in meta-analysis. Commun Stat Simul Comput. 2003, 32 (4): 1191-1203. 10.1081/SAC-120023885.CrossRef
13.
go back to reference Sánchez-Meca J, Marín-Martínez F: Confidence intervals for the overall effect size in random-effects meta-analysis. Psychol Meth. 2008, 13 (1): 31-CrossRef Sánchez-Meca J, Marín-Martínez F: Confidence intervals for the overall effect size in random-effects meta-analysis. Psychol Meth. 2008, 13 (1): 31-CrossRef
14.
go back to reference Sidik K, Jonkman JN: Simple heterogeneity variance estimation for meta analysis. J Roy Stat Soc. 2005, 54 (2): 367-384. 10.1111/j.1467-9876.2005.00489.x.CrossRef Sidik K, Jonkman JN: Simple heterogeneity variance estimation for meta analysis. J Roy Stat Soc. 2005, 54 (2): 367-384. 10.1111/j.1467-9876.2005.00489.x.CrossRef
15.
go back to reference Davey J, Turner R, Clarke M, Higgins J: Characteristics of meta-analyses and their component studies in the Cochrane Database of Systematic Reviews: a cross-sectional, descriptive analysis. BMC Med Res Methodol. 2011, 11 (1): 160-10.1186/1471-2288-11-160.CrossRefPubMedPubMedCentral Davey J, Turner R, Clarke M, Higgins J: Characteristics of meta-analyses and their component studies in the Cochrane Database of Systematic Reviews: a cross-sectional, descriptive analysis. BMC Med Res Methodol. 2011, 11 (1): 160-10.1186/1471-2288-11-160.CrossRefPubMedPubMedCentral
16.
17.
go back to reference Ioannidis JP, Patsopoulos NA, Evangelou E: Uncertainty in heterogeneity estimates in meta-analyses. Bmj. 2007, 335 (7626): 914-916. 10.1136/bmj.39343.408449.80.CrossRefPubMedPubMedCentral Ioannidis JP, Patsopoulos NA, Evangelou E: Uncertainty in heterogeneity estimates in meta-analyses. Bmj. 2007, 335 (7626): 914-916. 10.1136/bmj.39343.408449.80.CrossRefPubMedPubMedCentral
18.
go back to reference IntHout J, Ioannidis JP, Borm GF: Obtaining evidence by a single well-powered trial or several modestly powered trials. Stat Methods Med Res. 2012, [Epub ahead of print] IntHout J, Ioannidis JP, Borm GF: Obtaining evidence by a single well-powered trial or several modestly powered trials. Stat Methods Med Res. 2012, [Epub ahead of print]
19.
go back to reference Borm GF, Lemmers O, Fransen J, Donders R: The evidence provided by a single trial is less reliable than its statistical analysis suggests. J Clin Epidemiol. 2009, 62 (7): 711-715. 10.1016/j.jclinepi.2008.09.013. e711CrossRefPubMed Borm GF, Lemmers O, Fransen J, Donders R: The evidence provided by a single trial is less reliable than its statistical analysis suggests. J Clin Epidemiol. 2009, 62 (7): 711-715. 10.1016/j.jclinepi.2008.09.013. e711CrossRefPubMed
20.
go back to reference Viechtbauer W: Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010, 36 (3): 1-48.CrossRef Viechtbauer W: Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010, 36 (3): 1-48.CrossRef
21.
go back to reference Harbord RM, Higgins JP: Meta-regression in Stata. Meta. 2008, 8 (4): 493-519. Harbord RM, Higgins JP: Meta-regression in Stata. Meta. 2008, 8 (4): 493-519.
22.
go back to reference Higgins JPT, Thompson SG: Quantifying heterogeneity in a meta-analysis. Stat Med. 2002, 21 (11): 1539-1558. 10.1002/sim.1186.CrossRefPubMed Higgins JPT, Thompson SG: Quantifying heterogeneity in a meta-analysis. Stat Med. 2002, 21 (11): 1539-1558. 10.1002/sim.1186.CrossRefPubMed
24.
go back to reference Singh M, Das RR: Zinc for the common cold. Cochrane Database Syst Rev. 2011, 2: CD001364-PubMed Singh M, Das RR: Zinc for the common cold. Cochrane Database Syst Rev. 2011, 2: CD001364-PubMed
25.
go back to reference Pidala J, Djulbegovic B, Anasetti C, Kharfan‒Dabaja M, Kumar A: Allogeneic hematopoietic cell transplantation for acute lymphoblastic leukemia (ALL) in first complete remission. Cochrane Library. 2011, 10: CD008818- Pidala J, Djulbegovic B, Anasetti C, Kharfan‒Dabaja M, Kumar A: Allogeneic hematopoietic cell transplantation for acute lymphoblastic leukemia (ALL) in first complete remission. Cochrane Library. 2011, 10: CD008818-
26.
go back to reference Thorlund K, Wetterslev J, Awad T, Thabane L, Gluud C: Comparison of statistical inferences from the DerSimonian–Laird and alternative random-effects model meta-analyses – an empirical assessment of 920 Cochrane primary outcome meta-analyses. Res Synth Meth. 2011, 2 (4): 238-253. 10.1002/jrsm.53.CrossRef Thorlund K, Wetterslev J, Awad T, Thabane L, Gluud C: Comparison of statistical inferences from the DerSimonian–Laird and alternative random-effects model meta-analyses – an empirical assessment of 920 Cochrane primary outcome meta-analyses. Res Synth Meth. 2011, 2 (4): 238-253. 10.1002/jrsm.53.CrossRef
27.
go back to reference Kontopantelis E, Reeves D: Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: a simulation study. Stat Methods Med Res. 2012, 21 (4): 409-426. 10.1177/0962280210392008.CrossRefPubMed Kontopantelis E, Reeves D: Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: a simulation study. Stat Methods Med Res. 2012, 21 (4): 409-426. 10.1177/0962280210392008.CrossRefPubMed
28.
go back to reference Brockwell SE, Gordon IR: A simple method for inference on an overall effect in meta-analysis. Stat Med. 2007, 26 (25): 4531-4543. 10.1002/sim.2883.CrossRefPubMed Brockwell SE, Gordon IR: A simple method for inference on an overall effect in meta-analysis. Stat Med. 2007, 26 (25): 4531-4543. 10.1002/sim.2883.CrossRefPubMed
29.
go back to reference Hardy RJ, Thompson SG: A likelihood approach to meta-analysis with random effects. Stat Med. 1996, 15 (6): 619-629. 10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A.CrossRefPubMed Hardy RJ, Thompson SG: A likelihood approach to meta-analysis with random effects. Stat Med. 1996, 15 (6): 619-629. 10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A.CrossRefPubMed
31.
go back to reference Henmi M, Copas JB: Confidence intervals for random effects meta analysis and robustness to publication bias. Stat Med. 2010, 29 (29): 2969-2983. 10.1002/sim.4029.CrossRefPubMed Henmi M, Copas JB: Confidence intervals for random effects meta analysis and robustness to publication bias. Stat Med. 2010, 29 (29): 2969-2983. 10.1002/sim.4029.CrossRefPubMed
32.
go back to reference Guolo A: Higher-order likelihood inference in meta-analysis and meta-regression. Stat Med. 2012, 31 (4): 313-327. 10.1002/sim.4451.CrossRefPubMed Guolo A: Higher-order likelihood inference in meta-analysis and meta-regression. Stat Med. 2012, 31 (4): 313-327. 10.1002/sim.4451.CrossRefPubMed
33.
go back to reference Borenstein M, Hedges LV, Higgins JPT, Rothstein HR: Introduction to Meta-Analysis. 2009, Chichester, UK: WileyCrossRef Borenstein M, Hedges LV, Higgins JPT, Rothstein HR: Introduction to Meta-Analysis. 2009, Chichester, UK: WileyCrossRef
34.
go back to reference Knapp G, Hartung J: Improved tests for a random effects meta-regression with a single covariate. Stat Med. 2003, 22: 2693-2710. 10.1002/sim.1482.CrossRefPubMed Knapp G, Hartung J: Improved tests for a random effects meta-regression with a single covariate. Stat Med. 2003, 22: 2693-2710. 10.1002/sim.1482.CrossRefPubMed
Metadata
Title
The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method
Authors
Joanna IntHout
John PA Ioannidis
George F Borm
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2014
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-14-25

Other articles of this Issue 1/2014

BMC Medical Research Methodology 1/2014 Go to the issue

Reviewer acknowledgement

Reviewer acknowledgement 2013