Skip to main content
Top
Published in: Virology Journal 1/2015

Open Access 01-12-2015 | Methodology

A general method to eliminate laboratory induced recombinants during massive, parallel sequencing of cDNA library

Authors: Caryll Waugh, Deborah Cromer, Andrew Grimm, Abha Chopra, Simon Mallal, Miles Davenport, Johnson Mak

Published in: Virology Journal | Issue 1/2015

Login to get access

Abstract

Background

Massive, parallel sequencing is a potent tool for dissecting the regulation of biological processes by revealing the dynamics of the cellular RNA profile under different conditions. Similarly, massive, parallel sequencing can be used to reveal the complexity of viral quasispecies that are often found in the RNA virus infected host. However, the production of cDNA libraries for next-generation sequencing (NGS) necessitates the reverse transcription of RNA into cDNA and the amplification of the cDNA template using PCR, which may introduce artefact in the form of phantom nucleic acids species that can bias the composition and interpretation of original RNA profiles.

Method

Using HIV as a model we have characterised the major sources of error during the conversion of viral RNA to cDNA, namely excess RNA template and the RNaseH activity of the polymerase enzyme, reverse transcriptase. In addition we have analysed the effect of PCR cycle on detection of recombinants and assessed the contribution of transfection of highly similar plasmid DNA to the formation of recombinant species during the production of our control viruses.

Results

We have identified RNA template concentrations, RNaseH activity of reverse transcriptase, and PCR conditions as key parameters that must be carefully optimised to minimise chimeric artefacts.

Conclusions

Using our optimised RT-PCR conditions, in combination with our modified PCR amplification procedure, we have developed a reliable technique for accurate determination of RNA species using NGS technology.
Literature
1.
go back to reference Smyth RP, Schlub TE, Grimm A, Venturi V, Chopra A, Mallal S, et al. Reducing chimera formation during PCR amplification to ensure accurate genotyping. Gene. 2010;469(1–2):45–51.CrossRefPubMed Smyth RP, Schlub TE, Grimm A, Venturi V, Chopra A, Mallal S, et al. Reducing chimera formation during PCR amplification to ensure accurate genotyping. Gene. 2010;469(1–2):45–51.CrossRefPubMed
2.
go back to reference Di Giallonardo F, Zagordi O, Duport Y, Leemann C, Joos B, Kunzli-Gontarczyk M, et al. Next-generation sequencing of HIV-1 RNA genomes: determination of error rates and minimizing artificial recombination. PLoS One. 2013;8(9):e74249.CrossRefPubMedCentralPubMed Di Giallonardo F, Zagordi O, Duport Y, Leemann C, Joos B, Kunzli-Gontarczyk M, et al. Next-generation sequencing of HIV-1 RNA genomes: determination of error rates and minimizing artificial recombination. PLoS One. 2013;8(9):e74249.CrossRefPubMedCentralPubMed
3.
go back to reference Shao W, Boltz VF, Spindler JE, Kearney MF, Maldarelli F, Mellors JW, et al. Analysis of 454 sequencing error rate, error sources, and artifact recombination for detection of Low-frequency drug resistance mutations in HIV-1 DNA. Retrovirology. 2013;10:18.CrossRefPubMedCentralPubMed Shao W, Boltz VF, Spindler JE, Kearney MF, Maldarelli F, Mellors JW, et al. Analysis of 454 sequencing error rate, error sources, and artifact recombination for detection of Low-frequency drug resistance mutations in HIV-1 DNA. Retrovirology. 2013;10:18.CrossRefPubMedCentralPubMed
4.
go back to reference Dudley DM, Chin EN, Bimber BN, Sanabani SS, Tarosso LF, Costa PR, et al. Low-cost ultra-wide genotyping using Roche/454 pyrosequencing for surveillance of HIV drug resistance. PLoS One. 2012;7(5):e36494.CrossRefPubMedCentralPubMed Dudley DM, Chin EN, Bimber BN, Sanabani SS, Tarosso LF, Costa PR, et al. Low-cost ultra-wide genotyping using Roche/454 pyrosequencing for surveillance of HIV drug resistance. PLoS One. 2012;7(5):e36494.CrossRefPubMedCentralPubMed
5.
go back to reference Fisher R, van Zyl GU, Travers SA, Kosakovsky Pond SL, Engelbrech S, Murrell B, et al. Deep sequencing reveals minor protease resistance mutations in patients failing a protease inhibitor regimen. J Virol. 2012;86(11):6231–7.CrossRefPubMedCentralPubMed Fisher R, van Zyl GU, Travers SA, Kosakovsky Pond SL, Engelbrech S, Murrell B, et al. Deep sequencing reveals minor protease resistance mutations in patients failing a protease inhibitor regimen. J Virol. 2012;86(11):6231–7.CrossRefPubMedCentralPubMed
6.
go back to reference Avidor B, Girshengorn S, Matus N, Talio H, Achsanov S, Zeldis I, et al. Evaluation of a benchtop HIV ultradeep pyrosequencing drug resistance assay in the clinical laboratory. J Clin Microbiol. 2013;51(3):880–6.CrossRefPubMedCentralPubMed Avidor B, Girshengorn S, Matus N, Talio H, Achsanov S, Zeldis I, et al. Evaluation of a benchtop HIV ultradeep pyrosequencing drug resistance assay in the clinical laboratory. J Clin Microbiol. 2013;51(3):880–6.CrossRefPubMedCentralPubMed
7.
go back to reference Schlub TE, Smyth RP, Grimm AJ, Mak J, Davenport MP. Accurately measuring recombination between closely related HIV-1 genomes. PLoS Comput Biol. 2010;6(4):e1000766.CrossRefPubMedCentralPubMed Schlub TE, Smyth RP, Grimm AJ, Mak J, Davenport MP. Accurately measuring recombination between closely related HIV-1 genomes. PLoS Comput Biol. 2010;6(4):e1000766.CrossRefPubMedCentralPubMed
8.
go back to reference Kucherlapati RS, Eves EM, Song KY, Morse BS, Smithies O. Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA. Proc Natl Acad Sci U S A. 1984;81(10):3153–7.CrossRefPubMedCentralPubMed Kucherlapati RS, Eves EM, Song KY, Morse BS, Smithies O. Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA. Proc Natl Acad Sci U S A. 1984;81(10):3153–7.CrossRefPubMedCentralPubMed
9.
go back to reference Wake CT, Vernaleone F, Wilson JH. Topological requirements for homologous recombination among DNA molecules transfected into mammalian cells. Mol Cell Biol. 1985;5(8):2080–9.PubMedCentralPubMed Wake CT, Vernaleone F, Wilson JH. Topological requirements for homologous recombination among DNA molecules transfected into mammalian cells. Mol Cell Biol. 1985;5(8):2080–9.PubMedCentralPubMed
10.
go back to reference Rauth S, Song KY, Ayares D, Wallace L, Moore PD, Kucherlapati R. Transfection and homologous recombination involving single-stranded DNA substrates in mammalian cells and nuclear extracts. Proc Natl Acad Sci U S A. 1986;83(15):5587–91.CrossRefPubMedCentralPubMed Rauth S, Song KY, Ayares D, Wallace L, Moore PD, Kucherlapati R. Transfection and homologous recombination involving single-stranded DNA substrates in mammalian cells and nuclear extracts. Proc Natl Acad Sci U S A. 1986;83(15):5587–91.CrossRefPubMedCentralPubMed
11.
go back to reference Sprengel R, Varmus HE, Ganem D. Homologous recombination between hepadnaviral genomes following in vivo DNA transfection: implications for studies of viral infectivity. Virology. 1987;159(2):454–6.CrossRefPubMed Sprengel R, Varmus HE, Ganem D. Homologous recombination between hepadnaviral genomes following in vivo DNA transfection: implications for studies of viral infectivity. Virology. 1987;159(2):454–6.CrossRefPubMed
12.
go back to reference Coffin JM. Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol. 1979;42(1):1–26.CrossRefPubMed Coffin JM. Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol. 1979;42(1):1–26.CrossRefPubMed
13.
go back to reference Hwang CK, Svarovskaia ES, Pathak VK. Dynamic copy choice: steady state between murine leukemia virus polymerase and polymerase-dependent RNase H activity determines frequency of in vivo template switching. Proc Natl Acad Sci U S A. 2001;98(21):12209–14.CrossRefPubMedCentralPubMed Hwang CK, Svarovskaia ES, Pathak VK. Dynamic copy choice: steady state between murine leukemia virus polymerase and polymerase-dependent RNase H activity determines frequency of in vivo template switching. Proc Natl Acad Sci U S A. 2001;98(21):12209–14.CrossRefPubMedCentralPubMed
14.
go back to reference Levy DN, Aldrovandi GM, Kutsch O, Shaw GM. Dynamics of HIV-1 recombination in its natural target cells. Proc Natl Acad Sci U S A. 2004;101(12):4204–9.CrossRefPubMedCentralPubMed Levy DN, Aldrovandi GM, Kutsch O, Shaw GM. Dynamics of HIV-1 recombination in its natural target cells. Proc Natl Acad Sci U S A. 2004;101(12):4204–9.CrossRefPubMedCentralPubMed
15.
go back to reference Dapp MJ, Clouser CL, Patterson S, Mansky LM. 5-Azacytidine can induce lethal mutagenesis in human immunodeficiency virus type 1. J Virol. 2009;83(22):11950–8.CrossRefPubMedCentralPubMed Dapp MJ, Clouser CL, Patterson S, Mansky LM. 5-Azacytidine can induce lethal mutagenesis in human immunodeficiency virus type 1. J Virol. 2009;83(22):11950–8.CrossRefPubMedCentralPubMed
17.
18.
go back to reference Chen J, Nikolaitchik O, Singh J, Wright A, Bencsics CE, Coffin JM, et al. High efficiency of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion analysis. Proc Natl Acad Sci U S A. 2009;106(32):13535–40.CrossRefPubMedCentralPubMed Chen J, Nikolaitchik O, Singh J, Wright A, Bencsics CE, Coffin JM, et al. High efficiency of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion analysis. Proc Natl Acad Sci U S A. 2009;106(32):13535–40.CrossRefPubMedCentralPubMed
19.
go back to reference Englund G, Theodore TS, Freed EO, Engelman A, Martin MA. Integration is required for productive infection of monocyte-derived macrophages by human immunodeficiency virus type 1. J Virol. 1995;69(5):3216–9.PubMedCentralPubMed Englund G, Theodore TS, Freed EO, Engelman A, Martin MA. Integration is required for productive infection of monocyte-derived macrophages by human immunodeficiency virus type 1. J Virol. 1995;69(5):3216–9.PubMedCentralPubMed
20.
go back to reference Schlub TE, Grimm AJ, Smyth RP, Cromer D, Chopra A, Mallal S, et al. Fifteen to twenty percent of HIV substitution mutations are associated with recombination. J Virol. 2014;88(7):3837–49.CrossRefPubMedCentralPubMed Schlub TE, Grimm AJ, Smyth RP, Cromer D, Chopra A, Mallal S, et al. Fifteen to twenty percent of HIV substitution mutations are associated with recombination. J Virol. 2014;88(7):3837–49.CrossRefPubMedCentralPubMed
21.
go back to reference Smyth RP, Schlub TE, Grimm AJ, Waugh C, Ellenberg P, Chopra A, et al. Identifying recombination hot spots in the HIV-1 genome. J Virol. 2014;88(5):2891–902.CrossRefPubMedCentralPubMed Smyth RP, Schlub TE, Grimm AJ, Waugh C, Ellenberg P, Chopra A, et al. Identifying recombination hot spots in the HIV-1 genome. J Virol. 2014;88(5):2891–902.CrossRefPubMedCentralPubMed
Metadata
Title
A general method to eliminate laboratory induced recombinants during massive, parallel sequencing of cDNA library
Authors
Caryll Waugh
Deborah Cromer
Andrew Grimm
Abha Chopra
Simon Mallal
Miles Davenport
Johnson Mak
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2015
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-015-0280-x

Other articles of this Issue 1/2015

Virology Journal 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.