Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2018

Open Access 01-12-2018 | Research article

A dynamic Bayesian Markov model for health economic evaluations of interventions in infectious disease

Authors: Katrin Haeussler, Ardo van den Hout, Gianluca Baio

Published in: BMC Medical Research Methodology | Issue 1/2018

Login to get access

Abstract

Background

Health economic evaluations of interventions in infectious disease are commonly based on the predictions of ordinary differential equation (ODE) systems or Markov models (MMs). Standard MMs are static, whereas ODE systems are usually dynamic and account for herd immunity which is crucial to prevent overestimation of infection prevalence. Complex ODE systems including distributions on model parameters are computationally intensive. Thus, mainly ODE-based models including fixed parameter values are presented in the literature. These do not account for parameter uncertainty. As a consequence, probabilistic sensitivity analysis (PSA), a crucial component of health economic evaluations, cannot be conducted straightforwardly.

Methods

We present a dynamic MM under a Bayesian framework. We extend a static MM by incorporating the force of infection into the state allocation algorithm. The corresponding output is based on dynamic changes in prevalence and thus accounts for herd immunity. In contrast to deterministic ODE-based models, PSA can be conducted straightforwardly. We introduce a case study of a fictional sexually transmitted infection and compare our dynamic Bayesian MM to a deterministic and a Bayesian ODE system. The models are calibrated to simulated time series data.

Results

By means of the case study, we show that our methodology produces outcome which is comparable to the “gold standard” of the Bayesian ODE system.

Conclusions

In contrast to ODE systems in the literature, the dynamic MM includes distributions on all model parameters at manageable computational effort (including calibration). The run time of the Bayesian ODE system is 15 times longer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Orenstein W. Eradicating polio: how the world’s pediatricians can help stop this crippling illness forever. Pediatrics. 2015; 135(1):196–202.CrossRefPubMed Orenstein W. Eradicating polio: how the world’s pediatricians can help stop this crippling illness forever. Pediatrics. 2015; 135(1):196–202.CrossRefPubMed
2.
go back to reference Witty C. Milroy Lecture: eradication of disease: hype, hope and reality. Clin Med. 2014; 14(4):419–21.CrossRef Witty C. Milroy Lecture: eradication of disease: hype, hope and reality. Clin Med. 2014; 14(4):419–21.CrossRef
3.
go back to reference Weiss R, Esparza J. The prevention and eradication of smallpox: a commentary on Sloane (1755). An account of inoculation. Phil Trans R Soc B. 2014; 370:1–11. Weiss R, Esparza J. The prevention and eradication of smallpox: a commentary on Sloane (1755). An account of inoculation. Phil Trans R Soc B. 2014; 370:1–11.
6.
go back to reference Briggs A, Sculpher M, Claxton K. Decision Modelling for Health Economic Evaluation. Oxford: Oxford University Press; 2006. Briggs A, Sculpher M, Claxton K. Decision Modelling for Health Economic Evaluation. Oxford: Oxford University Press; 2006.
8.
go back to reference Baio G, Dawid A. Probabilistic Sensitivity Analysis in Health Economics. Stat Methods Med Res. 2011; 0:1–20. Baio G, Dawid A. Probabilistic Sensitivity Analysis in Health Economics. Stat Methods Med Res. 2011; 0:1–20.
9.
go back to reference Baio G. Bayesian Methods in Health Economics. Boca Raton: Chapman & Hall, CRC Biostatistics Series; 2013. Baio G. Bayesian Methods in Health Economics. Boca Raton: Chapman & Hall, CRC Biostatistics Series; 2013.
10.
go back to reference JCVI. Joint Committee on Vaccination and Immunisation. Code of Practice. 2013. Available from: https://www.gov.uk/government/uploads/system/uploads/attachment/_data/file/224864/JCVI/_Code/_of/_Practice/_revision/_2013/_-/_final.pdf. Accessed 02 Jan 2017. JCVI. Joint Committee on Vaccination and Immunisation. Code of Practice. 2013. Available from: https://​www.​gov.​uk/​government/​uploads/​system/​uploads/​attachment/​_​data/​file/​224864/​JCVI/​_​Code/​_​of/​_​Practice/​_​revision/​_​2013/​_​-/​_​final.​pdf.​ Accessed 02 Jan 2017.
11.
go back to reference Anderson R, May R. Vaccination and herd immunity to infectious diseases. Nature. 1985; 318:323–29.CrossRefPubMed Anderson R, May R. Vaccination and herd immunity to infectious diseases. Nature. 1985; 318:323–29.CrossRefPubMed
12.
go back to reference Pitman R, Fisman D, Zaric G, Postma M, Kretzschmar M, Edmunds J, Brisson M. Dynamic Transmission Modeling: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force-5. Value Health. 2012; 15:828–34.CrossRefPubMed Pitman R, Fisman D, Zaric G, Postma M, Kretzschmar M, Edmunds J, Brisson M. Dynamic Transmission Modeling: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force-5. Value Health. 2012; 15:828–34.CrossRefPubMed
13.
go back to reference Edmunds J, Medley G, Nokes D. Evaluating The Cost-Effectiveness Of Vaccination Programmes: A Dynamic Perspective. Stat Med. 1999; 18:3263–82.CrossRefPubMed Edmunds J, Medley G, Nokes D. Evaluating The Cost-Effectiveness Of Vaccination Programmes: A Dynamic Perspective. Stat Med. 1999; 18:3263–82.CrossRefPubMed
14.
go back to reference Chong K, Zee B, Wang M. A statistical method utilizing information of imported cases to estimate the transmissibility for an influenza pandemic. BMC Med Res Methodol. 2017; 17(31):1–9. Chong K, Zee B, Wang M. A statistical method utilizing information of imported cases to estimate the transmissibility for an influenza pandemic. BMC Med Res Methodol. 2017; 17(31):1–9.
15.
go back to reference Blower S, Dowlatabadi H. Sensitivity and Uncertainty Analysis of Complex Models of Disease Transmission: An HIV Model, as an Example. Int Stat Rev. 1994; 62:229–43.CrossRef Blower S, Dowlatabadi H. Sensitivity and Uncertainty Analysis of Complex Models of Disease Transmission: An HIV Model, as an Example. Int Stat Rev. 1994; 62:229–43.CrossRef
16.
go back to reference Jit M, Choi Y, Edmunds W. Economic Evaluation of Human Papillomavirus Vaccination in the United Kingdom. BMJ. 2008; 337:1–12.CrossRef Jit M, Choi Y, Edmunds W. Economic Evaluation of Human Papillomavirus Vaccination in the United Kingdom. BMJ. 2008; 337:1–12.CrossRef
17.
go back to reference Jit M, Chapman R, Hughes O, Choi Y. Comparing Bivalent and Quadrivalent Human Papillomavirus Vaccines: Economic Evaluation Based on Transmission Model. BMJ. 2011;:343:d5775. Jit M, Chapman R, Hughes O, Choi Y. Comparing Bivalent and Quadrivalent Human Papillomavirus Vaccines: Economic Evaluation Based on Transmission Model. BMJ. 2011;:343:d5775.
18.
go back to reference Khazeni N, Hutton D, Garber A, Hupert N, Owens D. Effectiveness and Cost-Effectiveness of Vaccination against Pandemic (H1N1) 2009. Ann Intern Med. 2009; 151:829–39.CrossRefPubMedPubMedCentral Khazeni N, Hutton D, Garber A, Hupert N, Owens D. Effectiveness and Cost-Effectiveness of Vaccination against Pandemic (H1N1) 2009. Ann Intern Med. 2009; 151:829–39.CrossRefPubMedPubMedCentral
19.
go back to reference Alistar S, Owens D, Brandeau M. Effectiveness and Cost Effectiveness of Expanding Harm Reduction and Antiretroviral Therapy in a Mixed HIV Epidemic: A Modeling Analysis for Ukraine. PLoS Med. 2011; 8:1–15.CrossRef Alistar S, Owens D, Brandeau M. Effectiveness and Cost Effectiveness of Expanding Harm Reduction and Antiretroviral Therapy in a Mixed HIV Epidemic: A Modeling Analysis for Ukraine. PLoS Med. 2011; 8:1–15.CrossRef
20.
go back to reference Juusola J, Brandeau M, Long E, Owens D, Bendavid E. The cost-effectiveness of symptom-based testing and routine screening for acute HIV infection in men who have sex with men in the USA. AIDS. 2011; 25:1779–87.CrossRefPubMedPubMedCentral Juusola J, Brandeau M, Long E, Owens D, Bendavid E. The cost-effectiveness of symptom-based testing and routine screening for acute HIV infection in men who have sex with men in the USA. AIDS. 2011; 25:1779–87.CrossRefPubMedPubMedCentral
21.
go back to reference Xiu D, Karniadakis G. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations. SIAM J Sci Comput. 2002; 24:619–44.CrossRef Xiu D, Karniadakis G. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations. SIAM J Sci Comput. 2002; 24:619–44.CrossRef
22.
go back to reference Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf. 2008; 93:964–79.CrossRef Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf. 2008; 93:964–79.CrossRef
23.
go back to reference Saltelli A, Sobol I. About the use of rank transformation in sensitivity analysis of model output. Reliab Eng Syst Saf. 1995; 50:225–39.CrossRef Saltelli A, Sobol I. About the use of rank transformation in sensitivity analysis of model output. Reliab Eng Syst Saf. 1995; 50:225–39.CrossRef
24.
go back to reference Saltelli A, Tarantola S, Chan K. A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output. Technometrics. 1999; 41:39–56.CrossRef Saltelli A, Tarantola S, Chan K. A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output. Technometrics. 1999; 41:39–56.CrossRef
25.
go back to reference Zaric G, Bayoumi A, Brandeau M, Owens D. The Cost Effectiveness of Counseling Strategies to Improve Adherence to Highly Active Antiretroviral Therapy (HAART) Among Men Who Have Sex With Men. Med Dec Making. 2008; 28(3):359–76.CrossRef Zaric G, Bayoumi A, Brandeau M, Owens D. The Cost Effectiveness of Counseling Strategies to Improve Adherence to Highly Active Antiretroviral Therapy (HAART) Among Men Who Have Sex With Men. Med Dec Making. 2008; 28(3):359–76.CrossRef
26.
go back to reference Long E, Stavert R. Portfolios of Biomedical HIV Interventions in South Africa: A Cost-Effectiveness Analysis. J Gen Intern Med. 2013; 28(10):1294–301.CrossRefPubMedPubMedCentral Long E, Stavert R. Portfolios of Biomedical HIV Interventions in South Africa: A Cost-Effectiveness Analysis. J Gen Intern Med. 2013; 28(10):1294–301.CrossRefPubMedPubMedCentral
27.
go back to reference Andronis L, Barton P, Bryan S. Sensitivity analysis in economic evaluation: an audit of NICE current practice and a review of its use and value in decision-making. Health Technol Assess. 2009; 13(29):1–100.CrossRef Andronis L, Barton P, Bryan S. Sensitivity analysis in economic evaluation: an audit of NICE current practice and a review of its use and value in decision-making. Health Technol Assess. 2009; 13(29):1–100.CrossRef
28.
go back to reference Vynnycky E, White R. An Introduction to Infectious Disease Modelling. New York: Oxford University Press; 2010. Vynnycky E, White R. An Introduction to Infectious Disease Modelling. New York: Oxford University Press; 2010.
29.
go back to reference Brisson M, Edmunds W. Economic Evaluation of Vaccination Programs: The Impact of Herd-Immunity. Med Dec Making. 2003; 23:76–82.CrossRef Brisson M, Edmunds W. Economic Evaluation of Vaccination Programs: The Impact of Herd-Immunity. Med Dec Making. 2003; 23:76–82.CrossRef
30.
go back to reference Ross E, Cinti S, Hutton D. A Cost-Effective, Clinically Actionable Strategy for Targeting HIV Preexposure Prophylaxis to High-Risk Men Who Have Sex With Men. J Acquir Immune Defic Syndr. 2016; 72:61–7.CrossRef Ross E, Cinti S, Hutton D. A Cost-Effective, Clinically Actionable Strategy for Targeting HIV Preexposure Prophylaxis to High-Risk Men Who Have Sex With Men. J Acquir Immune Defic Syndr. 2016; 72:61–7.CrossRef
31.
go back to reference Cooper B, Lipsitch M. The analysis of hospital infection data using hidden Markov models. Biostatistics. 2004; 5(2):223–37.CrossRefPubMed Cooper B, Lipsitch M. The analysis of hospital infection data using hidden Markov models. Biostatistics. 2004; 5(2):223–37.CrossRefPubMed
32.
go back to reference Gibson GJ, Renshaw E. Likelihood estimation for stochastic compartmental models using Markov chain methods. Stat Comput. 2001; 11(4):347–58.CrossRef Gibson GJ, Renshaw E. Likelihood estimation for stochastic compartmental models using Markov chain methods. Stat Comput. 2001; 11(4):347–58.CrossRef
33.
go back to reference Forrester M, Pettitt A. Use of Stochastic Epidemic Modeling to Quantify Transmission Rates of Colonization With Methicillin-Resistant Staphylococcus aureus in an Intensive Care Unit. Infect Control Hosp Epidemiol. 2005; 26(7):598–606.CrossRefPubMed Forrester M, Pettitt A. Use of Stochastic Epidemic Modeling to Quantify Transmission Rates of Colonization With Methicillin-Resistant Staphylococcus aureus in an Intensive Care Unit. Infect Control Hosp Epidemiol. 2005; 26(7):598–606.CrossRefPubMed
34.
go back to reference Auranen K, Eichner M, Käyhty H, Takala A, Arjas E. A Hierarchical Bayesian Model to Predict the Duration of Immunity to Haemophilus influenzae Type b. Biometrics. 1999; 55(4):1306–13.CrossRefPubMed Auranen K, Eichner M, Käyhty H, Takala A, Arjas E. A Hierarchical Bayesian Model to Predict the Duration of Immunity to Haemophilus influenzae Type b. Biometrics. 1999; 55(4):1306–13.CrossRefPubMed
35.
go back to reference Gibson GJ, Austin EJ. Fitting and testing spatio-temporal stochastic models with application in plant epidemiology. Plant Pathol. 1996; 45(2):172–84.CrossRef Gibson GJ, Austin EJ. Fitting and testing spatio-temporal stochastic models with application in plant epidemiology. Plant Pathol. 1996; 45(2):172–84.CrossRef
36.
go back to reference Haeussler K, Marcellusi A, Mennini F, Favato G, Picardo M, Garganese G, Bononi M, Costa S, Scambia G, Zweifel P, Capone A, Baio G. Cost-Effectiveness Analysis of Universal Human Papillomavirus Vaccination Using a Dynamic Bayesian Methodology: The BEST II Study. Value Health. 2015; 18(8):956–68.CrossRefPubMed Haeussler K, Marcellusi A, Mennini F, Favato G, Picardo M, Garganese G, Bononi M, Costa S, Scambia G, Zweifel P, Capone A, Baio G. Cost-Effectiveness Analysis of Universal Human Papillomavirus Vaccination Using a Dynamic Bayesian Methodology: The BEST II Study. Value Health. 2015; 18(8):956–68.CrossRefPubMed
37.
go back to reference Spiegelhalter D, Best N. Bayesian Approaches to Multiple Sources of Evidence and Uncertainty in Complex Cost-Effectiveness Modelling. Stat Med. 2003; 22:3687–709.CrossRefPubMed Spiegelhalter D, Best N. Bayesian Approaches to Multiple Sources of Evidence and Uncertainty in Complex Cost-Effectiveness Modelling. Stat Med. 2003; 22:3687–709.CrossRefPubMed
39.
go back to reference Welton N, Sutton A, Cooper N, Abrams K, Ades A. Evidence Synthesis for Decision Making in Healthcare. Chichester: John Wiley & Sons, Ltd.; 2012.CrossRef Welton N, Sutton A, Cooper N, Abrams K, Ades A. Evidence Synthesis for Decision Making in Healthcare. Chichester: John Wiley & Sons, Ltd.; 2012.CrossRef
41.
go back to reference Stan Modeling Language. User’s Guide and Reference Manual, Version 2.14.0. 2016. Available from: http://mc-stan.org/. Accessed 02 Jan 2017. Stan Modeling Language. User’s Guide and Reference Manual, Version 2.14.0. 2016. Available from: http://​mc-stan.​org/​.​ Accessed 02 Jan 2017.
42.
go back to reference Bilcke J, Chapman R, Atchison C, Cromer D, Johnson H, Willem L, Cox M, Edmunds W, Jit M. Quantifying Parameter and Structural Uncertainty of Dynamic Disease Transmission Models Using MCMC: An Application to Rotavirus Vaccination in England and Wales. Med Dec Making. 2015; 35:633–47.CrossRef Bilcke J, Chapman R, Atchison C, Cromer D, Johnson H, Willem L, Cox M, Edmunds W, Jit M. Quantifying Parameter and Structural Uncertainty of Dynamic Disease Transmission Models Using MCMC: An Application to Rotavirus Vaccination in England and Wales. Med Dec Making. 2015; 35:633–47.CrossRef
43.
go back to reference van Rosmalen J, Toy M, O’Mahony J. A Mathematical Approach for Evaluating Markov Models in Continuous Time without Discrete-Event Simulation. Med Dec Making. 2013; 33:767–79.CrossRef van Rosmalen J, Toy M, O’Mahony J. A Mathematical Approach for Evaluating Markov Models in Continuous Time without Discrete-Event Simulation. Med Dec Making. 2013; 33:767–79.CrossRef
45.
go back to reference Andersen P, Abildstrom S, Rosthoj S. Competing risks as a multi-state model. Stat Methods Med Res. 2002; 11:203–15.CrossRefPubMed Andersen P, Abildstrom S, Rosthoj S. Competing risks as a multi-state model. Stat Methods Med Res. 2002; 11:203–15.CrossRefPubMed
46.
go back to reference Dreyer T, Van Vuuren J. A comparison between continuous and discrete modelling of cables with bending stiffness. Appl Math Model. 1999; 23(7):527–41.CrossRef Dreyer T, Van Vuuren J. A comparison between continuous and discrete modelling of cables with bending stiffness. Appl Math Model. 1999; 23(7):527–41.CrossRef
47.
go back to reference Cooper N, Abrams K, Sutton A, Turner D, Lambert P. A Bayesian approach to Markov modelling in cost-effectiveness analyses: application to taxane use in advanced breast cancer. J R Stat Soc Ser A. 2003; 166:389–405.CrossRef Cooper N, Abrams K, Sutton A, Turner D, Lambert P. A Bayesian approach to Markov modelling in cost-effectiveness analyses: application to taxane use in advanced breast cancer. J R Stat Soc Ser A. 2003; 166:389–405.CrossRef
48.
go back to reference Korostil I, Peters G, Cornebise J, Regan D. Adaptive Markov Chain Monte Carlo Forward Projection for Statistical Analysis in Epidemic Modelling of Human Papillomavirus. Stat Med. 2012; 32(11):1917–53.CrossRefPubMed Korostil I, Peters G, Cornebise J, Regan D. Adaptive Markov Chain Monte Carlo Forward Projection for Statistical Analysis in Epidemic Modelling of Human Papillomavirus. Stat Med. 2012; 32(11):1917–53.CrossRefPubMed
49.
go back to reference Gelman A, Carlin J, Stern H, Rubin D. Bayesian Data Analysis. London: Chapman & Hall/CRC; 2004. Gelman A, Carlin J, Stern H, Rubin D. Bayesian Data Analysis. London: Chapman & Hall/CRC; 2004.
50.
go back to reference Vanni T, Karnon J, Madan J, White R, Edmunds W, Foss A, Legood R. Calibrating models in economic evaluation: a seven-step approach. Pharmacoeconomics. 2011; 29:35–49.CrossRefPubMed Vanni T, Karnon J, Madan J, White R, Edmunds W, Foss A, Legood R. Calibrating models in economic evaluation: a seven-step approach. Pharmacoeconomics. 2011; 29:35–49.CrossRefPubMed
51.
go back to reference Package BCEA. Bayesian cost-effectiveness analysis. 2015. Available from: http://cran.r-project.org/web/packages/BCEA/BCEA.pdf. Accessed 02 Jan 2017. Package BCEA. Bayesian cost-effectiveness analysis. 2015. Available from: http://​cran.​r-project.​org/​web/​packages/​BCEA/​BCEA.​pdf.​ Accessed 02 Jan 2017.
52.
go back to reference Heath A, Manolopoulou I, Baio G. Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample: A Nonparametric Regression Approach. Med Dec Making. 2014; 34(3):311–26.CrossRef Heath A, Manolopoulou I, Baio G. Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample: A Nonparametric Regression Approach. Med Dec Making. 2014; 34(3):311–26.CrossRef
53.
go back to reference Heath A, Manolopoulou I, Baio G. Estimating the expected value of partial perfect information in health economic evaluations using integrated nested Laplace approximation. Stat Med. 2016; 35(23):4264–80.CrossRefPubMedPubMedCentral Heath A, Manolopoulou I, Baio G. Estimating the expected value of partial perfect information in health economic evaluations using integrated nested Laplace approximation. Stat Med. 2016; 35(23):4264–80.CrossRefPubMedPubMedCentral
54.
go back to reference Heath A, Manolopoulou I, Baio G. Efficient Monte Carlo Estimation of the Expected Value of Sample Information Using Moment Matching. Med Dec Making. 2018; 38(2):163–73.CrossRef Heath A, Manolopoulou I, Baio G. Efficient Monte Carlo Estimation of the Expected Value of Sample Information Using Moment Matching. Med Dec Making. 2018; 38(2):163–73.CrossRef
55.
go back to reference Van de Velde N. Modeling Human Papillomavirus Vaccine Effectiveness: Quantifying the Impact of Parameter Uncertainty. Am J Epidemiol. 2007; 165:762–75.CrossRefPubMed Van de Velde N. Modeling Human Papillomavirus Vaccine Effectiveness: Quantifying the Impact of Parameter Uncertainty. Am J Epidemiol. 2007; 165:762–75.CrossRefPubMed
56.
go back to reference de Angelis D, Sweeting M, Ades A, Hickman M, Hope V, Ramsay M. An evidence synthesis approach to estimating Hepatitis C Prevalence in England and Wales. Stat Methods Med Res. 2009; 19:361–79.CrossRef de Angelis D, Sweeting M, Ades A, Hickman M, Hope V, Ramsay M. An evidence synthesis approach to estimating Hepatitis C Prevalence in England and Wales. Stat Methods Med Res. 2009; 19:361–79.CrossRef
57.
go back to reference Welton N, Ades A. A model of toxoplasmosis incidence in the UK: evidence synthesis and consistency of evidence. J R Stat Soc: Ser C: Appl Stat. 2005; 54:385–404.CrossRef Welton N, Ades A. A model of toxoplasmosis incidence in the UK: evidence synthesis and consistency of evidence. J R Stat Soc: Ser C: Appl Stat. 2005; 54:385–404.CrossRef
58.
go back to reference Jenness S. Package EpiModel. 2015. Available from: https://cran.r-project.org/web/packages/EpiModel/EpiModel.pdf. Accessed 02 Jan 2017. Jenness S. Package EpiModel. 2015. Available from: https://​cran.​r-project.​org/​web/​packages/​EpiModel/​EpiModel.​pdf.​ Accessed 02 Jan 2017.
59.
go back to reference Soetaert K, Petzoldt T, Woodrow Setzer R. Package deSolve: Solving Initial Value Differential Equations in R. 2015. Available from: https://cran.r-project.org/web/packages/deSolve/vignettes/deSolve.pdf. Accessed 02 Jan 2017. Soetaert K, Petzoldt T, Woodrow Setzer R. Package deSolve: Solving Initial Value Differential Equations in R. 2015. Available from: https://​cran.​r-project.​org/​web/​packages/​deSolve/​vignettes/​deSolve.​pdf.​ Accessed 02 Jan 2017.
60.
go back to reference Lunn D. WinBUGS Differential Interface (WBDiff). 2004. Available from: http://winbugs-development.mrc-bsu.cam.ac.uk/wbdiff.html. Accessed 02 Jan 2017. Lunn D. WinBUGS Differential Interface (WBDiff). 2004. Available from: http://​winbugs-development.​mrc-bsu.​cam.​ac.​uk/​wbdiff.​html.​ Accessed 02 Jan 2017.
61.
go back to reference Plummer M. JAGS Version 4.0.0 user manual. 2015. Available from: http://sourceforge.net/projects/mcmc-jags/files/Manuals/4.x/jags/_user/_manual.pdf. Accessed 02 Jan 2017. Plummer M. JAGS Version 4.0.0 user manual. 2015. Available from: http://​sourceforge.​net/​projects/​mcmc-jags/​files/​Manuals/​4.​x/​jags/​_​user/​_​manual.​pdf.​ Accessed 02 Jan 2017.
64.
go back to reference Brooks S, Gelman A, Jones G, Meng X-L. Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC, Boca Raton: Academic Press; 2011.CrossRef Brooks S, Gelman A, Jones G, Meng X-L. Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC, Boca Raton: Academic Press; 2011.CrossRef
Metadata
Title
A dynamic Bayesian Markov model for health economic evaluations of interventions in infectious disease
Authors
Katrin Haeussler
Ardo van den Hout
Gianluca Baio
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2018
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-018-0541-7

Other articles of this Issue 1/2018

BMC Medical Research Methodology 1/2018 Go to the issue