Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2010

01-07-2010 | Preclinical study

A dose- and time-controllable syngeneic animal model of breast cancer microcalcification

Authors: Fangbing Liu, Preeti Misra, Elaine P. Lunsford, Joanne T. Vannah, Yuxia Liu, Robert E. Lenkinski, John V. Frangioni

Published in: Breast Cancer Research and Treatment | Issue 1/2010

Login to get access

Abstract

The development of novel diagnostic agents for the detection of breast cancer microcalcifications requires a reliable animal model. Based on previous work from our group, we hypothesized that a single systemic injection of recombinant bone morphogenetic protein-2 (rBMP-2) could be used to create such a model. The cDNA encoding mature human BMP-2 was expressed in BL21(DE3) bacteria, purified to homogeneity, and refolded as a dimer. Bioactivity was confirmed using a C2C12 alkaline phosphatase assay. rBMP-2 was radiolabeled with 99mTc, and its biodistribution and clearance were quantified after both intravenous (IV) and intraperitoneal (IP) injection. Fischer 344 rats bearing syngeneic R3230 breast tumors received a single intraperitoneal injection of rBMP-2 at a specified dose. Tumor microcalcification was quantified over time using micro–single photon emission computed tomography (SPECT) and microcomputed tomography (CT). rBMP-2 could be expressed in E. coli at high levels, isolated at >95% purity, and refolded to a bioactive dimer. Beta-phase half-life was 30.5 min after IV administration and 47.6 min after IP administration. Renal excretion was the primary mode of clearance. A single IP injection of ≥50 μg rBMP-2 when tumors were not yet palpable resulted in dose-dependent microcalcification in 8 of 8 R3230 tumors. No calcification was found in control tumors or in normal tissues and organs of animals injected with rBMP-2. Tumor calcification increased progressively between weeks 2 and 4 post-rBMP-2 injection. A single IP injection of rBMP-2 in rats bearing a syngeneic breast cancer will produce dose-dependent and time-dependent microcalcifications. This animal model lays the foundation for the development of novel diagnostic radiotracers for breast cancer.
Literature
1.
go back to reference Feig SA, Sickles EA, Evans WP, Linver MN (2004) Re: changes in breast cancer detection and mammography recall rates after the introduction of a computer-aided detection system. J Natl Cancer Inst 96:1260–1261 author reply 1261PubMedCrossRef Feig SA, Sickles EA, Evans WP, Linver MN (2004) Re: changes in breast cancer detection and mammography recall rates after the introduction of a computer-aided detection system. J Natl Cancer Inst 96:1260–1261 author reply 1261PubMedCrossRef
2.
go back to reference Morgan MP, Cooke MM, McCarthy GM (2005) Microcalcifications associated with breast cancer: an epiphenomenon or biologically significant feature of selected tumors? J Mammary Gland Biol Neoplasia 10:181–187CrossRefPubMed Morgan MP, Cooke MM, McCarthy GM (2005) Microcalcifications associated with breast cancer: an epiphenomenon or biologically significant feature of selected tumors? J Mammary Gland Biol Neoplasia 10:181–187CrossRefPubMed
3.
go back to reference Stomper PC, Geradts J, Edge SB, Levine EG (2003) Mammographic predictors of the presence and size of invasive carcinomas associated with malignant microcalcification lesions without a mass. AJR Am J Roentgenol 181:1679–1684PubMed Stomper PC, Geradts J, Edge SB, Levine EG (2003) Mammographic predictors of the presence and size of invasive carcinomas associated with malignant microcalcification lesions without a mass. AJR Am J Roentgenol 181:1679–1684PubMed
4.
go back to reference Liberman L (2004) Breast cancer screening with MRI-what are the data for patients at high risk? N Engl J Med 351:497–500CrossRefPubMed Liberman L (2004) Breast cancer screening with MRI-what are the data for patients at high risk? N Engl J Med 351:497–500CrossRefPubMed
5.
go back to reference Berg WA, Weinberg IN, Narayanan D, Lobrano ME, Ross E, Amodei L, Tafra L, Adler LP, Uddo J, Stein W 3rd et al (2006) High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer. Breast J 12:309–323CrossRefPubMed Berg WA, Weinberg IN, Narayanan D, Lobrano ME, Ross E, Amodei L, Tafra L, Adler LP, Uddo J, Stein W 3rd et al (2006) High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer. Breast J 12:309–323CrossRefPubMed
6.
go back to reference Raylman RR, Majewski S, Smith MF, Proffitt J, Hammond W, Srinivasan A, McKisson J, Popov V, Weisenberger A, Judy CO et al (2008) The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements. Phys Med Biol 53:637–653CrossRefPubMed Raylman RR, Majewski S, Smith MF, Proffitt J, Hammond W, Srinivasan A, McKisson J, Popov V, Weisenberger A, Judy CO et al (2008) The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements. Phys Med Biol 53:637–653CrossRefPubMed
7.
go back to reference Wu X, Xiao H (2009) Progress in the detection of human genome structural variations. Sci China C Life Sci 52:560–567CrossRefPubMed Wu X, Xiao H (2009) Progress in the detection of human genome structural variations. Sci China C Life Sci 52:560–567CrossRefPubMed
8.
go back to reference Ferranti C, Coopmans de Yoldi G, Biganzoli E, Bergonzi S, Mariani L, Scaperrotta G, Marchesini M (2000) Relationships between age, mammographic features and pathological tumour characteristics in non-palpable breast cancer. Br J Radiol 73:698–705PubMed Ferranti C, Coopmans de Yoldi G, Biganzoli E, Bergonzi S, Mariani L, Scaperrotta G, Marchesini M (2000) Relationships between age, mammographic features and pathological tumour characteristics in non-palpable breast cancer. Br J Radiol 73:698–705PubMed
9.
go back to reference Evans AJ, Kutt E, Record C, Waller M, Bobrow L, Moss S (2007) Radiological and pathological findings of interval cancers in a multi-centre, randomized, controlled trial of mammographic screening in women from age 40–41 years. Clin Radiol 62:348–352CrossRefPubMed Evans AJ, Kutt E, Record C, Waller M, Bobrow L, Moss S (2007) Radiological and pathological findings of interval cancers in a multi-centre, randomized, controlled trial of mammographic screening in women from age 40–41 years. Clin Radiol 62:348–352CrossRefPubMed
10.
go back to reference Bhushan KR, Misra P, Liu F, Mathur S, Lenkinski RE, Frangioni JV (2008) Detection of breast cancer microcalcifications using a dual-modality SPECT/NIR fluorescent probe. J Am Chem Soc 130:17648–17649CrossRefPubMed Bhushan KR, Misra P, Liu F, Mathur S, Lenkinski RE, Frangioni JV (2008) Detection of breast cancer microcalcifications using a dual-modality SPECT/NIR fluorescent probe. J Am Chem Soc 130:17648–17649CrossRefPubMed
11.
go back to reference Bhushan KR, Tanaka E, Frangioni JV (2007) Synthesis of conjugatable bisphosphonates for molecular imaging of large animals. Angew Chem Int Ed Engl 46:7969–7971CrossRefPubMed Bhushan KR, Tanaka E, Frangioni JV (2007) Synthesis of conjugatable bisphosphonates for molecular imaging of large animals. Angew Chem Int Ed Engl 46:7969–7971CrossRefPubMed
12.
go back to reference Lenkinski RE, Ahmed M, Zaheer A, Frangioni JV, Goldberg SN (2003) Near-infrared fluorescence imaging of microcalcification in an animal model of breast cancer. Acad Radiol 10:1159–1164CrossRefPubMed Lenkinski RE, Ahmed M, Zaheer A, Frangioni JV, Goldberg SN (2003) Near-infrared fluorescence imaging of microcalcification in an animal model of breast cancer. Acad Radiol 10:1159–1164CrossRefPubMed
13.
go back to reference Zaheer A, Lenkinski RE, Mahmood A, Jones AG, Cantley LC, Frangioni JV (2001) In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol 19:1148–1154CrossRefPubMed Zaheer A, Lenkinski RE, Mahmood A, Jones AG, Cantley LC, Frangioni JV (2001) In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol 19:1148–1154CrossRefPubMed
14.
go back to reference Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS (2002) Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy. Cancer Res 62:5375–5380PubMed Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS (2002) Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy. Cancer Res 62:5375–5380PubMed
15.
go back to reference Liu F, Bloch N, Bhushan KR, De Grand AM, Tanaka E, Solazzo S, Mertyna PM, Goldberg N, Frangioni JV, Lenkinski RE (2008) Humoral bone morphogenetic protein 2 is sufficient for inducing breast cancer microcalcification. Mol Imaging 7:175–186PubMed Liu F, Bloch N, Bhushan KR, De Grand AM, Tanaka E, Solazzo S, Mertyna PM, Goldberg N, Frangioni JV, Lenkinski RE (2008) Humoral bone morphogenetic protein 2 is sufficient for inducing breast cancer microcalcification. Mol Imaging 7:175–186PubMed
16.
go back to reference Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534CrossRefPubMed Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534CrossRefPubMed
17.
go back to reference Vallejo LF, Brokelmann M, Marten S, Trappe S, Cabrera-Crespo J, Hoffmann A, Gross G, Weich HA, Rinas U (2002) Renaturation and purification of bone morphogenetic protein-2 produced as inclusion bodies in high-cell-density cultures of recombinant Escherichia coli. J Biotechnol 94:185–194CrossRefPubMed Vallejo LF, Brokelmann M, Marten S, Trappe S, Cabrera-Crespo J, Hoffmann A, Gross G, Weich HA, Rinas U (2002) Renaturation and purification of bone morphogenetic protein-2 produced as inclusion bodies in high-cell-density cultures of recombinant Escherichia coli. J Biotechnol 94:185–194CrossRefPubMed
18.
go back to reference Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127:1755–1766CrossRefPubMed Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127:1755–1766CrossRefPubMed
19.
go back to reference Misra P, Humblet V, Pannier N, Maison W, Frangioni JV (2007) Production of multimeric prostate-specific membrane antigen small-molecule radiotracers using a solid-phase 99mTc preloading strategy. J Nucl Med 48:1379–1389CrossRefPubMed Misra P, Humblet V, Pannier N, Maison W, Frangioni JV (2007) Production of multimeric prostate-specific membrane antigen small-molecule radiotracers using a solid-phase 99mTc preloading strategy. J Nucl Med 48:1379–1389CrossRefPubMed
20.
go back to reference Thompson SW, Hunt RD (1996) Selected histochemical and histopathological methods. Charles C. Thomas, Springfield Thompson SW, Hunt RD (1996) Selected histochemical and histopathological methods. Charles C. Thomas, Springfield
21.
go back to reference Zaheer A, Murshed M, De Grand AM, Morgan TG, Karsenty G, Frangioni JV (2006) Optical imaging of hydroxyapatite in the calcified vasculature of transgenic animals. Arterioscler Thromb Vasc Biol 26:1132–1136CrossRefPubMed Zaheer A, Murshed M, De Grand AM, Morgan TG, Karsenty G, Frangioni JV (2006) Optical imaging of hydroxyapatite in the calcified vasculature of transgenic animals. Arterioscler Thromb Vasc Biol 26:1132–1136CrossRefPubMed
22.
go back to reference Knaus P, Sebald W (2001) Cooperativity of binding epitopes and receptor chains in the BMP/TGFbeta superfamily. Biol Chem 382:1189–1195CrossRefPubMed Knaus P, Sebald W (2001) Cooperativity of binding epitopes and receptor chains in the BMP/TGFbeta superfamily. Biol Chem 382:1189–1195CrossRefPubMed
23.
go back to reference Long S, Truong L, Bennett K, Phillips A, Wong-Staal F, Ma H (2006) Expression, purification, and renaturation of bone morphogenetic protein-2 from Escherichia coli. Protein Expr Purif 46:374–378CrossRefPubMed Long S, Truong L, Bennett K, Phillips A, Wong-Staal F, Ma H (2006) Expression, purification, and renaturation of bone morphogenetic protein-2 from Escherichia coli. Protein Expr Purif 46:374–378CrossRefPubMed
24.
go back to reference Steinert S, Kroll TC, Taubert I, Pusch L, Hortschansky P, Hoffken K, Wolfl S, Clement JH (2008) Differential expression of cancer-related genes by single and permanent exposure to bone morphogenetic protein 2. J Cancer Res Clin Oncol 134:1237–1245CrossRefPubMed Steinert S, Kroll TC, Taubert I, Pusch L, Hortschansky P, Hoffken K, Wolfl S, Clement JH (2008) Differential expression of cancer-related genes by single and permanent exposure to bone morphogenetic protein 2. J Cancer Res Clin Oncol 134:1237–1245CrossRefPubMed
25.
go back to reference Alarmo EL, Kuukasjarvi T, Karhu R, Kallioniemi A (2007) A comprehensive expression survey of bone morphogenetic proteins in breast cancer highlights the importance of BMP4 and BMP7. Breast Cancer Res Treat 103:239–246CrossRefPubMed Alarmo EL, Kuukasjarvi T, Karhu R, Kallioniemi A (2007) A comprehensive expression survey of bone morphogenetic proteins in breast cancer highlights the importance of BMP4 and BMP7. Breast Cancer Res Treat 103:239–246CrossRefPubMed
26.
go back to reference Dimar JR 2nd, Glassman SD, Burkus JK, Pryor PW, Hardacker JW, Carreon LY (2009) Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J Bone Joint Surg Am 91:1377–1386CrossRefPubMed Dimar JR 2nd, Glassman SD, Burkus JK, Pryor PW, Hardacker JW, Carreon LY (2009) Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J Bone Joint Surg Am 91:1377–1386CrossRefPubMed
27.
go back to reference Clement JH, Raida M, Sanger J, Bicknell R, Liu J, Naumann A, Geyer A, Waldau A, Hortschansky P, Schmidt A et al (2005) Bone morphogenetic protein 2 (BMP-2) induces in vitro invasion and in vivo hormone independent growth of breast carcinoma cells. Int J Oncol 27:401–407PubMed Clement JH, Raida M, Sanger J, Bicknell R, Liu J, Naumann A, Geyer A, Waldau A, Hortschansky P, Schmidt A et al (2005) Bone morphogenetic protein 2 (BMP-2) induces in vitro invasion and in vivo hormone independent growth of breast carcinoma cells. Int J Oncol 27:401–407PubMed
28.
go back to reference Katsuno Y, Hanyu A, Kanda H, Ishikawa Y, Akiyama F, Iwase T, Ogata E, Ehata S, Miyazono K, Imamura T (2008) Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene 27:6322–6333CrossRefPubMed Katsuno Y, Hanyu A, Kanda H, Ishikawa Y, Akiyama F, Iwase T, Ogata E, Ehata S, Miyazono K, Imamura T (2008) Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene 27:6322–6333CrossRefPubMed
29.
go back to reference Langenfeld EM, Calvano SE, Abou-Nukta F, Lowry SF, Amenta P, Langenfeld J (2003) The mature bone morphogenetic protein-2 is aberrantly expressed in non-small cell lung carcinomas and stimulates tumor growth of A549 cells. Carcinogenesis 24:1445–1454CrossRefPubMed Langenfeld EM, Calvano SE, Abou-Nukta F, Lowry SF, Amenta P, Langenfeld J (2003) The mature bone morphogenetic protein-2 is aberrantly expressed in non-small cell lung carcinomas and stimulates tumor growth of A549 cells. Carcinogenesis 24:1445–1454CrossRefPubMed
30.
go back to reference Langenfeld EM, Langenfeld J (2004) Bone morphogenetic protein-2 stimulates angiogenesis in developing tumors. Mol Cancer Res 2:141–149PubMed Langenfeld EM, Langenfeld J (2004) Bone morphogenetic protein-2 stimulates angiogenesis in developing tumors. Mol Cancer Res 2:141–149PubMed
31.
go back to reference Scheufler C, Sebald W, Hulsmeyer M (1999) Crystal structure of human bone morphogenetic protein-2 at 2.7 A resolution. J Mol Biol 287:103–115CrossRefPubMed Scheufler C, Sebald W, Hulsmeyer M (1999) Crystal structure of human bone morphogenetic protein-2 at 2.7 A resolution. J Mol Biol 287:103–115CrossRefPubMed
Metadata
Title
A dose- and time-controllable syngeneic animal model of breast cancer microcalcification
Authors
Fangbing Liu
Preeti Misra
Elaine P. Lunsford
Joanne T. Vannah
Yuxia Liu
Robert E. Lenkinski
John V. Frangioni
Publication date
01-07-2010
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2010
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-009-0535-6

Other articles of this Issue 1/2010

Breast Cancer Research and Treatment 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine