Skip to main content
Top
Published in: Journal of Digital Imaging 6/2016

01-12-2016

A Computer-Aided Type-II Fuzzy Image Processing for Diagnosis of Meniscus Tear

Authors: M. H. Fazel Zarandi, A. Khadangi, F. Karimi, I. B. Turksen

Published in: Journal of Imaging Informatics in Medicine | Issue 6/2016

Login to get access

Abstract

Meniscal tear is one of the prevalent knee disorders among young athletes and the aging population, and requires correct diagnosis and surgical intervention, if necessary. Not only the errors followed by human intervention but also the obstacles of manual meniscal tear detection highlight the need for automatic detection techniques. This paper presents a type-2 fuzzy expert system for meniscal tear diagnosis using PD magnetic resonance images (MRI). The scheme of the proposed type-2 fuzzy image processing model is composed of three distinct modules: Pre-processing, Segmentation, and Classification. λ-nhancement algorithm is used to perform the pre-processing step. For the segmentation step, first, Interval Type-2 Fuzzy C-Means (IT2FCM) is applied to the images, outputs of which are then employed by Interval Type-2 Possibilistic C-Means (IT2PCM) to perform post-processes. Second stage concludes with re-estimation of “η” value to enhance IT2PCM. Finally, a Perceptron neural network with two hidden layers is used for Classification stage. The results of the proposed type-2 expert system have been compared with a well-known segmentation algorithm, approving the superiority of the proposed system in meniscal tear recognition.
Literature
1.
go back to reference De Smet AA, Norris MA, Yandow DR: MR diagnosis of meniscal tears of the knee: importance of high signal in the meniscus that extends to the surface. American Journal of Roentgenology 161:101–107, 1993CrossRefPubMed De Smet AA, Norris MA, Yandow DR: MR diagnosis of meniscal tears of the knee: importance of high signal in the meniscus that extends to the surface. American Journal of Roentgenology 161:101–107, 1993CrossRefPubMed
2.
go back to reference Bowers ME, Tung GA, Fleming BC, Crisco JJ, Rey J: Quantification of meniscal volume by segmentation of 3T magnetic resonance images. Journal of Biomechanics 40(12):2811–2815, 2007CrossRefPubMedPubMedCentral Bowers ME, Tung GA, Fleming BC, Crisco JJ, Rey J: Quantification of meniscal volume by segmentation of 3T magnetic resonance images. Journal of Biomechanics 40(12):2811–2815, 2007CrossRefPubMedPubMedCentral
3.
go back to reference FazelZarandi MH, Zarinbal M, Izadi M: Systematic image processing for diagnosing brain tumors: a type-2 fuzzy expert system approach. Applied Soft Computing 11(1):285–294, 2009CrossRef FazelZarandi MH, Zarinbal M, Izadi M: Systematic image processing for diagnosing brain tumors: a type-2 fuzzy expert system approach. Applied Soft Computing 11(1):285–294, 2009CrossRef
4.
go back to reference Kostopoulos S, Sidiropoulos K, Glotsos D, Athanasiadis E, Konstantina B, Lavdas E, Oikonomou G, Fezoulidis IV, Vlychou M, Hantes M, Cavouras D: A systematic approach to magnetic resonance imaging evaluation of epiphyseal lesions. Magnetic Resonance Imaging 31(3):418–431, 2013CrossRef Kostopoulos S, Sidiropoulos K, Glotsos D, Athanasiadis E, Konstantina B, Lavdas E, Oikonomou G, Fezoulidis IV, Vlychou M, Hantes M, Cavouras D: A systematic approach to magnetic resonance imaging evaluation of epiphyseal lesions. Magnetic Resonance Imaging 31(3):418–431, 2013CrossRef
5.
go back to reference J.M. Mendel, R.I. John, Type-2 fuzzy sets made simple. IEEE Transactions on fuzzy systems 2002 10 117–127. J.M. Mendel, R.I. John, Type-2 fuzzy sets made simple. IEEE Transactions on fuzzy systems 2002 10 117–127.
6.
go back to reference J.M. Mendel, R.I. John, F. Liu, Interval type-2 fuzzy logic systems made simple. IEEE Transactions on fuzzy systems 2006 14 808–821. J.M. Mendel, R.I. John, F. Liu, Interval type-2 fuzzy logic systems made simple. IEEE Transactions on fuzzy systems 2006 14 808–821.
7.
go back to reference Hough Jr, AJ, Webber RJ: Pathology of the meniscus. Clinical Orthopedics and Related Research 252:32–40, 1990 Hough Jr, AJ, Webber RJ: Pathology of the meniscus. Clinical Orthopedics and Related Research 252:32–40, 1990
9.
go back to reference Scott, W.N., Surgery of the knee. Elsevier Inc., 2006. Scott, W.N., Surgery of the knee. Elsevier Inc., 2006.
10.
go back to reference Fox MG: MR imaging of the meniscus: review, current trends, and clinical implications. Magnetic Resonance Imaging Clinics of North America 15(1):103–123, 2007CrossRefPubMed Fox MG: MR imaging of the meniscus: review, current trends, and clinical implications. Magnetic Resonance Imaging Clinics of North America 15(1):103–123, 2007CrossRefPubMed
11.
go back to reference McCarty EcFau—Marx, R.G., T.L. Marx RgFau—Wickiewicz, and T.L. Wickiewicz, Meniscal tears in the athlete. Operative and nonoperative management, 2000. 28(8): p. 1308–1316. McCarty EcFau—Marx, R.G., T.L. Marx RgFau—Wickiewicz, and T.L. Wickiewicz, Meniscal tears in the athlete. Operative and nonoperative management, 2000. 28(8): p. 1308–1316.
12.
go back to reference Helms CA: The meniscus: recent advances in MR imaging of the knee. American Journal of Roentgenology 179(5):1115–1122, 2002CrossRefPubMed Helms CA: The meniscus: recent advances in MR imaging of the knee. American Journal of Roentgenology 179(5):1115–1122, 2002CrossRefPubMed
13.
go back to reference Ramakrishna B, et al: An automatic computer-aided detection system for meniscal tears on magnetic resonance images. Medical Imaging, IEEE Transactions on 28(8):1308–1316, 2009CrossRef Ramakrishna B, et al: An automatic computer-aided detection system for meniscal tears on magnetic resonance images. Medical Imaging, IEEE Transactions on 28(8):1308–1316, 2009CrossRef
14.
go back to reference C. Köse et al. An automatic diagnosis method for the knee meniscus tears in MR images. Expert systems with applications,2009. 36(2): p. 1208 – 1216. C. Köse et al. An automatic diagnosis method for the knee meniscus tears in MR images. Expert systems with applications,2009. 36(2): p. 1208 – 1216.
15.
go back to reference Pohle R., & Toennies, K. Segmentation of medical images using adaptive region growing. Medical imaging,2001. SPIE 4322. Pohle R., & Toennies, K. Segmentation of medical images using adaptive region growing. Medical imaging,2001. SPIE 4322.
16.
go back to reference Wright DH, De Smet AA, Norris M: Bucket-handle tears of the medial and lateral menisci of the knee: value of MR imaging in detecting displaced fragments. American Journal of Roentgenology 165(3):621–625, 1995CrossRefPubMed Wright DH, De Smet AA, Norris M: Bucket-handle tears of the medial and lateral menisci of the knee: value of MR imaging in detecting displaced fragments. American Journal of Roentgenology 165(3):621–625, 1995CrossRefPubMed
17.
go back to reference Ja-Chih F, Lin C-C, Wang C-N, Yang-Kun O: Computer-aided diagnosis for knee meniscus tears in magnetic resonance imaging. Journal of Industrial and Production Engineering 30(2):67–77, 2013CrossRef Ja-Chih F, Lin C-C, Wang C-N, Yang-Kun O: Computer-aided diagnosis for knee meniscus tears in magnetic resonance imaging. Journal of Industrial and Production Engineering 30(2):67–77, 2013CrossRef
18.
go back to reference Hata Y, Kobashi S, Tokimoto S, Ishikawa M, Ishikawa H: Computer-aided diagnosis system of meniscal tears with T1- and T2-weighted MR images based on fuzzy inference. Lecture Notes Computer Science 2206:55–58, 2001CrossRef Hata Y, Kobashi S, Tokimoto S, Ishikawa M, Ishikawa H: Computer-aided diagnosis system of meniscal tears with T1- and T2-weighted MR images based on fuzzy inference. Lecture Notes Computer Science 2206:55–58, 2001CrossRef
19.
go back to reference J. Waterton, S. Solloway, J. Foster, M. keen, S. Gandy, B. Middleton, R. Maciewicz, I. Watt, P. Dieppe, and C. Taylor. Diurnal variation in the femoral articular cartilage of the knee in young adult humans. Magnetic Resonance Medicine,2000. 43: p. 126–132. J. Waterton, S. Solloway, J. Foster, M. keen, S. Gandy, B. Middleton, R. Maciewicz, I. Watt, P. Dieppe, and C. Taylor. Diurnal variation in the femoral articular cartilage of the knee in young adult humans. Magnetic Resonance Medicine,2000. 43: p. 126–132.
20.
go back to reference Fripp J, Bourgeat P, Crozier S, Ourselin S: Segmentation of the bones in MRIs of the knee using phase, magnitude, and shape information. Academic Radiology 14(10):1201–1208, 2007CrossRefPubMed Fripp J, Bourgeat P, Crozier S, Ourselin S: Segmentation of the bones in MRIs of the knee using phase, magnitude, and shape information. Academic Radiology 14(10):1201–1208, 2007CrossRefPubMed
21.
go back to reference Tang J, Millington S, Acton ST, Crandall J, Hurwitz S: Surface extraction and thickness measurement of the articular cartilage from MR images using directional gradient vector flow snakes. IEEE Transactions Biomedical Engineering 53(5):896–907, 2006CrossRef Tang J, Millington S, Acton ST, Crandall J, Hurwitz S: Surface extraction and thickness measurement of the articular cartilage from MR images using directional gradient vector flow snakes. IEEE Transactions Biomedical Engineering 53(5):896–907, 2006CrossRef
22.
go back to reference Stammberger T, Eckstein F, Englmeier K, Reiser M: Determination of 3D cartilage thickness data from MR imaging: computational method and reproducibility in the living. Magnetic Resonance medicine 41:529–536, 1999CrossRef Stammberger T, Eckstein F, Englmeier K, Reiser M: Determination of 3D cartilage thickness data from MR imaging: computational method and reproducibility in the living. Magnetic Resonance medicine 41:529–536, 1999CrossRef
23.
go back to reference Li K, Millington S, Wu X, Chen DZ, Sonka M: Simultaneous segmentation of multiple closed surfaces using optimal graph searching. Proceedings International Conference on Information Processing in Medical Imaging 3565:406–417, 2005CrossRef Li K, Millington S, Wu X, Chen DZ, Sonka M: Simultaneous segmentation of multiple closed surfaces using optimal graph searching. Proceedings International Conference on Information Processing in Medical Imaging 3565:406–417, 2005CrossRef
24.
go back to reference Hu L, Cheng HD, Zhang M: A high performance edge detector based on fuzzy inference rules. Information sciences 177(21):4768–4784, 2007CrossRef Hu L, Cheng HD, Zhang M: A high performance edge detector based on fuzzy inference rules. Information sciences 177(21):4768–4784, 2007CrossRef
25.
go back to reference L.A. Zadeh. The concept of a linguistic variable and its applications to approximate reasoning. Information sciences,1975. 8: p. 199–249. L.A. Zadeh. The concept of a linguistic variable and its applications to approximate reasoning. Information sciences,1975. 8: p. 199–249.
26.
go back to reference P. Melin, O. Castillo. Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing. Springer-Verlag,2005. P. Melin, O. Castillo. Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing. Springer-Verlag,2005.
27.
go back to reference O. Castillo, P. Melin. Type-2 Fuzzy Logic: Theory and Applications. Springer-Verlag,2008. O. Castillo, P. Melin. Type-2 Fuzzy Logic: Theory and Applications. Springer-Verlag,2008.
28.
go back to reference FazelZarandi MH, Turksen IB, TorabiKasbi O: Type-2 fuzzy modeling for desulphurization of steel process. Expert Systems with Applications 32:157–171, 2007CrossRef FazelZarandi MH, Turksen IB, TorabiKasbi O: Type-2 fuzzy modeling for desulphurization of steel process. Expert Systems with Applications 32:157–171, 2007CrossRef
29.
go back to reference Turksen IB: Type-2 representation and reasoning for CWW. Fuzzy Sets and Systems 127:17–36, 2002CrossRef Turksen IB: Type-2 representation and reasoning for CWW. Fuzzy Sets and Systems 127:17–36, 2002CrossRef
30.
go back to reference V. Kuperman. Magnetic Resonance Imaging: Physical Principles and Applications. Academic Press,2000. V. Kuperman. Magnetic Resonance Imaging: Physical Principles and Applications. Academic Press,2000.
31.
go back to reference M.H. FazelZarandi, M. Zarinbal, I. B.Turksen. Type-2 Possibilistic C-Means Clustering. IFSA-USEFLAT,2009. p. 30–35. M.H. FazelZarandi, M. Zarinbal, I. B.Turksen. Type-2 Possibilistic C-Means Clustering. IFSA-USEFLAT,2009. p. 30–35.
32.
go back to reference Tizhoosh, H.R., G. Krell, and B. Michaelis. λ-Enhancement: contrast adaptation based on optimization of image fuzziness. IEEE International Conference on Fuzzy Systems, 1998. 2: p. 1548–1553. Tizhoosh, H.R., G. Krell, and B. Michaelis. λ-Enhancement: contrast adaptation based on optimization of image fuzziness. IEEE International Conference on Fuzzy Systems, 1998. 2: p. 1548–1553.
33.
go back to reference Kwon SH: Cluster validity index for fuzzy clustering. Electronics Letters 34(22):2176–2177, 1998CrossRef Kwon SH: Cluster validity index for fuzzy clustering. Electronics Letters 34(22):2176–2177, 1998CrossRef
34.
go back to reference FazelZarandi MH, Rezaee B, Turksen IB, Neshat E: A type-2 fuzzy rule based expert system model for stock price analysis. Expert Systems with Applications 36:139–154, 2009CrossRef FazelZarandi MH, Rezaee B, Turksen IB, Neshat E: A type-2 fuzzy rule based expert system model for stock price analysis. Expert Systems with Applications 36:139–154, 2009CrossRef
35.
go back to reference Young Sik C, Krishnapuram R: A robust approach to image enhancement based on fuzzy logic. Image Processing, IEEE Transactions on 6(6):808–825, 1997CrossRef Young Sik C, Krishnapuram R: A robust approach to image enhancement based on fuzzy logic. Image Processing, IEEE Transactions on 6(6):808–825, 1997CrossRef
36.
go back to reference Tizhoosh HR: Image thresholding using type II fuzzy sets. Pattern Recognition 38(12):2363–2372, 2005CrossRef Tizhoosh HR: Image thresholding using type II fuzzy sets. Pattern Recognition 38(12):2363–2372, 2005CrossRef
37.
go back to reference Tizhoosh, H.R., Adaptive λ-enhancement: type-1 versus type-2 fuzzy implementation. IEEE Symposium on Computational Intelligence in Image Processing, CIIP—Proceedings, 2009. Tizhoosh, H.R., Adaptive λ-enhancement: type-1 versus type-2 fuzzy implementation. IEEE Symposium on Computational Intelligence in Image Processing, CIIP—Proceedings, 2009.
38.
go back to reference J.V. Oliveira, W. Pedrycz. Advances in Fuzzy Clustering and its Applications. John Wiley and Sons Ltd., 2007. J.V. Oliveira, W. Pedrycz. Advances in Fuzzy Clustering and its Applications. John Wiley and Sons Ltd., 2007.
39.
go back to reference Hwang, C. and F.C.H. Rhee, Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means. IEEE Transactions on Fuzzy Systems, 2007. 15(1): p. 107–120. Hwang, C. and F.C.H. Rhee, Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means. IEEE Transactions on Fuzzy Systems, 2007. 15(1): p. 107–120.
40.
go back to reference Rhee, F.C.H. and C. Hwang. A type-2 fuzzy C-means clustering algorithm. Annual Conference of the North American Fuzzy Information Processing Society—NAFIPS, 2001. Rhee, F.C.H. and C. Hwang. A type-2 fuzzy C-means clustering algorithm. Annual Conference of the North American Fuzzy Information Processing Society—NAFIPS, 2001.
41.
go back to reference Krishnapuram, R. and J.M. Keller, Possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems, 1993. 1(2): p. 98–110. Krishnapuram, R. and J.M. Keller, Possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems, 1993. 1(2): p. 98–110.
42.
go back to reference Zadeh, L.A., Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1999. 100 Supplement 1(0) p. 9–34. Zadeh, L.A., Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1999. 100 Supplement 1(0) p. 9–34.
43.
go back to reference Min, J.H., E.A. Shim, and F.C.H. Rhee. An interval type-2 fuzzy PCM algorithm for pattern recognition. IEEE International Conference on Fuzzy Systems. 2009. p. 480–483. Min, J.H., E.A. Shim, and F.C.H. Rhee. An interval type-2 fuzzy PCM algorithm for pattern recognition. IEEE International Conference on Fuzzy Systems. 2009. p. 480–483.
44.
go back to reference M.H. FazelZarandi, M.R. Faraji, and M. Karbasian, An exponential cluster validity index for fuzzy clustering with crisp and fuzzy data. Scientia Iranica, 2010. 17(2): p. 95–110. M.H. FazelZarandi, M.R. Faraji, and M. Karbasian, An exponential cluster validity index for fuzzy clustering with crisp and fuzzy data. Scientia Iranica, 2010. 17(2): p. 95–110.
45.
go back to reference Karnik, N.N. and J.M. Mendel. Introduction to type-2 fuzzy logic systems. IEEE International Conference on Fuzzy Systems, 1998. p. 643–658. Karnik, N.N. and J.M. Mendel. Introduction to type-2 fuzzy logic systems. IEEE International Conference on Fuzzy Systems, 1998. p. 643–658.
46.
go back to reference Karnik, N.N. and J.M. Mendel, Centroid of a type-2 fuzzy set. Information Sciences, 2001. 132: p. 195–220. Karnik, N.N. and J.M. Mendel, Centroid of a type-2 fuzzy set. Information Sciences, 2001. 132: p. 195–220.
47.
go back to reference Tizhoosh HR: Type-II fuzzy image segmentation; fuzzy sets and their extensions: representation, aggregation and models. Studies in Fuzziness and Soft Computing 220:607–619, 2008CrossRef Tizhoosh HR: Type-II fuzzy image segmentation; fuzzy sets and their extensions: representation, aggregation and models. Studies in Fuzziness and Soft Computing 220:607–619, 2008CrossRef
Metadata
Title
A Computer-Aided Type-II Fuzzy Image Processing for Diagnosis of Meniscus Tear
Authors
M. H. Fazel Zarandi
A. Khadangi
F. Karimi
I. B. Turksen
Publication date
01-12-2016
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 6/2016
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-016-9884-y

Other articles of this Issue 6/2016

Journal of Digital Imaging 6/2016 Go to the issue