Skip to main content
Top
Published in: BMC Proceedings 7/2009

Open Access 01-12-2009 | Proceedings

A comparative study of three methods for detecting association of quantitative traits in samples of related subjects

Authors: Aude Saint Pierre, Zulma Vitezica, Maria Martinez

Published in: BMC Proceedings | Special Issue 7/2009

Login to get access

Abstract

We used Genetic Analysis Workshop 16 Problem 3 Framingham Heart Study simulated data set to compare methods for association analysis of quantitative traits in related individuals. More specifically, we investigated type I error and relative power of three approaches: the measured genotype, the quantitative transmission-disequilibrium test (QTDT), and the quantitative trait linkage-disequilibrium (QTLD) tests. We studied high-density lipoprotein and triglyceride (TG) lipid variables, as measured at Visit 1. Knowing the answers, we selected three true major genes for high-density lipoprotein and/or TG. Empirical distributions of the three association models were derived from the first 100 replicates. In these data, all three models were similar in error rates. Across the three association models, the power was the lowest for the functional SNP with smallest size effects (i.e., α2), and for the less heritable trait (i.e., TG). Our results showed that measured genotype outperformed the two orthogonal-based association models (QTLD, QTDT), even after accounting for population stratification. QTDT had the lowest power rates. This is consistent with the amount of marker and trait data used by each association model. While the effective sample sizes varied little across our tested variants, we observed some large power drops and marked differences in performances of the models. We found that the performances contrasted the most for the tightly linked, but not associated, functional variants.
Literature
1.
go back to reference Abecasis GR, Cardon LR, Cookson WO: A general test of association for quantitative traits in nuclear families. Am J Hum Genet. 2000, 66: 279-292. 10.1086/302698.PubMedCentralCrossRefPubMed Abecasis GR, Cardon LR, Cookson WO: A general test of association for quantitative traits in nuclear families. Am J Hum Genet. 2000, 66: 279-292. 10.1086/302698.PubMedCentralCrossRefPubMed
2.
go back to reference Fulker DW, Cherny SS, Sham PC, Hewitt JK: Combined linkage and association sib-pair analysis for quantitative traits. Am J Hum Genet. 1999, 64: 259-267. 10.1086/302193.PubMedCentralCrossRefPubMed Fulker DW, Cherny SS, Sham PC, Hewitt JK: Combined linkage and association sib-pair analysis for quantitative traits. Am J Hum Genet. 1999, 64: 259-267. 10.1086/302193.PubMedCentralCrossRefPubMed
3.
go back to reference Havill LM, Dyer TD, Richardson DK, Mahaney MC, Blangero J: The quantitative trait linkage disequilibrium test: a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification. BMC Genet. 2005, 6 (suppl 1): S91-10.1186/1471-2156-6-S1-S91.PubMedCentralCrossRefPubMed Havill LM, Dyer TD, Richardson DK, Mahaney MC, Blangero J: The quantitative trait linkage disequilibrium test: a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification. BMC Genet. 2005, 6 (suppl 1): S91-10.1186/1471-2156-6-S1-S91.PubMedCentralCrossRefPubMed
4.
go back to reference Hopper JL, Mathews JD: Extensions to multivariate normal models for pedigree analysis. Ann Hum Genet. 1982, 46: 373-383. 10.1111/j.1469-1809.1982.tb01588.x.CrossRefPubMed Hopper JL, Mathews JD: Extensions to multivariate normal models for pedigree analysis. Ann Hum Genet. 1982, 46: 373-383. 10.1111/j.1469-1809.1982.tb01588.x.CrossRefPubMed
5.
go back to reference Boerwinkle E, Chakraborty R, Sing CF: The use of measured genotype information in the analysis of quantitative phenotypes in man. I. Models and analytical methods. Ann Hum Genet. 1986, 50: 181-194. 10.1111/j.1469-1809.1986.tb01037.x.CrossRefPubMed Boerwinkle E, Chakraborty R, Sing CF: The use of measured genotype information in the analysis of quantitative phenotypes in man. I. Models and analytical methods. Ann Hum Genet. 1986, 50: 181-194. 10.1111/j.1469-1809.1986.tb01037.x.CrossRefPubMed
6.
go back to reference Aulchenko YS, de Koning DJ, Haley C: Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics. 2007, 177: 577-585. 10.1534/genetics.107.075614.PubMedCentralCrossRefPubMed Aulchenko YS, de Koning DJ, Haley C: Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics. 2007, 177: 577-585. 10.1534/genetics.107.075614.PubMedCentralCrossRefPubMed
7.
Metadata
Title
A comparative study of three methods for detecting association of quantitative traits in samples of related subjects
Authors
Aude Saint Pierre
Zulma Vitezica
Maria Martinez
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Proceedings / Issue Special Issue 7/2009
Electronic ISSN: 1753-6561
DOI
https://doi.org/10.1186/1753-6561-3-S7-S122

Other articles of this Special Issue 7/2009

BMC Proceedings 7/2009 Go to the issue