Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

A chimeric EBV gp350/220-based VLP replicates the virion B-cell attachment mechanism and elicits long-lasting neutralizing antibodies in mice

Authors: Javier Gordon Ogembo, Matthew R Muraswki, Lori W McGinnes, Agapi Parcharidou, Rujapak Sutiwisesak, Timelia Tison, Juan Avendano, Deep Agnani, Robert W Finberg, Trudy G Morrison, Joyce D Fingeroth

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Epstein-Barr virus (EBV), an oncogenic gammaherpesvirus, causes acute infectious mononucleosis (AIM) and is linked to the development of several human malignancies. There is an urgent need for a vaccine that is safe, prevents infection and/or limits disease. Unique among human herpesviruses, glycoprotein (gp)350/220, which initiates EBV attachment to susceptible host cells, is the major ligand on the EBV envelope and is highly conserved. Interaction between gp350/220 and complement receptor type 2 (CR2)/CD21 and/or (CR1)/CD35 on B-cells is required for infection. Potent antibody responses to gp350/220 occur in animal models and humans. Thus, gp350/220 provides an attractive candidate for prophylactic subunit vaccine development. However, in a recent Phase II clinical trial immunization with soluble recombinant gp350 reduced the incidence of AIM, but did not prevent infection. Despite various attempts to produce an EBV vaccine, no vaccine is licensed. Herein we describe a sub-unit vaccine against EBV based on a novel Newcastle disease virus (NDV)-virus-like particle (VLP) platform consisting of EBVgp350/220 ectodomain fused to NDV-fusion (F) protein. The chimeric protein EBVgp350/220-F is incorporated into the membrane of a VLP composed of the NDV matrix and nucleoprotein. The particles resemble native EBV in diameter and shape and bind CD21 and CD35. Immunization of BALB/c mice with EBVgp350/220-F VLPs elicited strong, long-lasting neutralizing antibody responses when assessed in vitro. This chimeric VLP is predicted to provide a superior safety profile as it is efficiently produced in Chinese hamster ovary (CHO) cells using a platform devoid of human nucleic acid and EBV-transforming genes.
Literature
1.
go back to reference Rickinson AB, Kieff E. Epstein-Barr Virus. In: Knipe D, Howley P, editors. Fields Virology, vol. 2. 5th ed. Philadelphia: Lippincott Wilkins and Williams; 2007. p. 2680–700. Epstein-Barr Virus. Rickinson AB, Kieff E. Epstein-Barr Virus. In: Knipe D, Howley P, editors. Fields Virology, vol. 2. 5th ed. Philadelphia: Lippincott Wilkins and Williams; 2007. p. 2680–700. Epstein-Barr Virus.
2.
go back to reference Hjalgrim H, Friborg J, Melbye M. The epidemiology of EBV and its association with malignant disease. Cambridge: Cmbridge University Press; 2007. Hjalgrim H, Friborg J, Melbye M. The epidemiology of EBV and its association with malignant disease. Cambridge: Cmbridge University Press; 2007.
3.
go back to reference Balfour Jr HH, Odumade OA, Schmeling DO, Mullan BD, Ed JA, Knight JA, et al. Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus infection in university students. J Infect Dis. 2013;207:80–8.CrossRefPubMedCentralPubMed Balfour Jr HH, Odumade OA, Schmeling DO, Mullan BD, Ed JA, Knight JA, et al. Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus infection in university students. J Infect Dis. 2013;207:80–8.CrossRefPubMedCentralPubMed
4.
go back to reference Luzuriaga K, Sullivan JL. Infectious mononucleosis. New England J Med. 2010;362:1993–2000.CrossRef Luzuriaga K, Sullivan JL. Infectious mononucleosis. New England J Med. 2010;362:1993–2000.CrossRef
5.
go back to reference Hochberg DR, Thorley-Lawson DA. Quantitative detection of viral gene expression in populations of Epstein-Barr virus-infected cells in vivo. Methods Mol Biol. 2005;292:39–56.PubMed Hochberg DR, Thorley-Lawson DA. Quantitative detection of viral gene expression in populations of Epstein-Barr virus-infected cells in vivo. Methods Mol Biol. 2005;292:39–56.PubMed
6.
go back to reference Carbone A, Vaccher E, Gloghini A, Pantanowitz L, Abayomi A, de Paoli P, et al. Diagnosis and management of lymphomas and other cancers in HIV-infected patients. Nat Rev Clin Oncol. 2014;11:223–38.CrossRefPubMed Carbone A, Vaccher E, Gloghini A, Pantanowitz L, Abayomi A, de Paoli P, et al. Diagnosis and management of lymphomas and other cancers in HIV-infected patients. Nat Rev Clin Oncol. 2014;11:223–38.CrossRefPubMed
7.
go back to reference Gottschalk S, Rooney CM, Heslop HE. Post-transplant lymphoproliferative disorders. Annu Rev Med. 2005;56:29–44.CrossRefPubMed Gottschalk S, Rooney CM, Heslop HE. Post-transplant lymphoproliferative disorders. Annu Rev Med. 2005;56:29–44.CrossRefPubMed
8.
go back to reference Allen UD, Farkas G, Hebert D, Weitzman S, Stephens D, Petric M, et al. Risk factors for post-transplant lymphoproliferative disorder in pediatric patients: a case–control study. Pediatr Transplant. 2005;9:450–5.CrossRefPubMed Allen UD, Farkas G, Hebert D, Weitzman S, Stephens D, Petric M, et al. Risk factors for post-transplant lymphoproliferative disorder in pediatric patients: a case–control study. Pediatr Transplant. 2005;9:450–5.CrossRefPubMed
9.
go back to reference Paya C, Fung J, Nalesnik M, Kieff E, Green M, Gores G, et al. ASTS/ASTP EBV-PTLD Task Force and The Mayo Clinic Organized International Consensus Development Meeting: Epstein-Barr virus-induced posttransplant lymphoproliferative disorders. Transplantation. 1999;68:1517–25.CrossRefPubMed Paya C, Fung J, Nalesnik M, Kieff E, Green M, Gores G, et al. ASTS/ASTP EBV-PTLD Task Force and The Mayo Clinic Organized International Consensus Development Meeting: Epstein-Barr virus-induced posttransplant lymphoproliferative disorders. Transplantation. 1999;68:1517–25.CrossRefPubMed
10.
go back to reference Schiller JT, Lowy DR. Vaccines to prevent infections by oncoviruses. Annu Rev Microbiol. 2010;64:23–41.CrossRefPubMed Schiller JT, Lowy DR. Vaccines to prevent infections by oncoviruses. Annu Rev Microbiol. 2010;64:23–41.CrossRefPubMed
12.
go back to reference Thorley-Lawson DA, Geilinger K. Monoclonal antibodies against the major glycoprotein (gp350/220) of Epstein-Barr virus neutralize infectivity. Proc Natl Acad Sci U S A. 1980;77:5307–11.CrossRefPubMedCentralPubMed Thorley-Lawson DA, Geilinger K. Monoclonal antibodies against the major glycoprotein (gp350/220) of Epstein-Barr virus neutralize infectivity. Proc Natl Acad Sci U S A. 1980;77:5307–11.CrossRefPubMedCentralPubMed
13.
go back to reference Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci U S A. 1984;81:4510–4.CrossRefPubMedCentralPubMed Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci U S A. 1984;81:4510–4.CrossRefPubMedCentralPubMed
14.
go back to reference Ogembo JG, Kannan L, Ghiran I, Nicholson-Weller A, Finberg RW, Tsokos GC, et al. Human complement receptor type 1/CD35 is an Epstein-Barr Virus receptor. Cell Rep. 2013;3:371–85.CrossRefPubMedCentralPubMed Ogembo JG, Kannan L, Ghiran I, Nicholson-Weller A, Finberg RW, Tsokos GC, et al. Human complement receptor type 1/CD35 is an Epstein-Barr Virus receptor. Cell Rep. 2013;3:371–85.CrossRefPubMedCentralPubMed
15.
go back to reference Tanner J, Weis J, Fearon D, Whang Y, Kieff E. Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell. 1987;50:203–13.CrossRefPubMed Tanner J, Weis J, Fearon D, Whang Y, Kieff E. Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell. 1987;50:203–13.CrossRefPubMed
16.
go back to reference Cohen JI, Fauci AS, Varmus H, Nabel GJ. Epstein-Barr virus: an important vaccine target for cancer prevention. Sci Transl Med. 2011;3:107fs107.CrossRef Cohen JI, Fauci AS, Varmus H, Nabel GJ. Epstein-Barr virus: an important vaccine target for cancer prevention. Sci Transl Med. 2011;3:107fs107.CrossRef
17.
go back to reference Sokal EM, Hoppenbrouwers K, Vandermeulen C, Moutschen M, Léonard P, Moreels A, et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults. J Infect Dis. 2007;196:1749–53.CrossRefPubMed Sokal EM, Hoppenbrouwers K, Vandermeulen C, Moutschen M, Léonard P, Moreels A, et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults. J Infect Dis. 2007;196:1749–53.CrossRefPubMed
18.
go back to reference Kingsman SM, Kingsman AJ. Polyvalent recombinant antigens: a new vaccine strategy. Vaccine. 1988;6:304–6.CrossRefPubMed Kingsman SM, Kingsman AJ. Polyvalent recombinant antigens: a new vaccine strategy. Vaccine. 1988;6:304–6.CrossRefPubMed
19.
go back to reference Link A, Zabel F, Schnetzler Y, Titz A, Brombacher F, Bachmann MF. Innate immunity mediates follicular transport of particulate but not soluble protein antigen. J Immunol. 2012;188:3724–33.CrossRefPubMed Link A, Zabel F, Schnetzler Y, Titz A, Brombacher F, Bachmann MF. Innate immunity mediates follicular transport of particulate but not soluble protein antigen. J Immunol. 2012;188:3724–33.CrossRefPubMed
20.
go back to reference Chackerian B. Virus-like particles: flexible platforms for vaccine development. Expert Rev Vaccines. 2007;6:381–90.CrossRefPubMed Chackerian B. Virus-like particles: flexible platforms for vaccine development. Expert Rev Vaccines. 2007;6:381–90.CrossRefPubMed
21.
go back to reference Pavlova S, Feederle R, Gartner K, Fuchs W, Granzow H, Delecluse HJ. An Epstein-Barr virus mutant produces immunogenic defective particles devoid of viral DNA. J Virol. 2013;87:2011–22.CrossRefPubMedCentralPubMed Pavlova S, Feederle R, Gartner K, Fuchs W, Granzow H, Delecluse HJ. An Epstein-Barr virus mutant produces immunogenic defective particles devoid of viral DNA. J Virol. 2013;87:2011–22.CrossRefPubMedCentralPubMed
22.
go back to reference Ruiss R, Jochum S, Wanner G, Reisbach G, Hammerschmidt W, Zeidler R. A virus-like particle-based Epstein-Barr virus vaccine. J Virol. 2011;85:13105–13.CrossRefPubMedCentralPubMed Ruiss R, Jochum S, Wanner G, Reisbach G, Hammerschmidt W, Zeidler R. A virus-like particle-based Epstein-Barr virus vaccine. J Virol. 2011;85:13105–13.CrossRefPubMedCentralPubMed
23.
go back to reference Speck P, Longnecker R. Epstein-Barr virus (EBV) infection visualized by EGFP expression demonstrates dependence on known mediators of EBV entry. Arch Virol. 1999;144:1123–37.CrossRefPubMed Speck P, Longnecker R. Epstein-Barr virus (EBV) infection visualized by EGFP expression demonstrates dependence on known mediators of EBV entry. Arch Virol. 1999;144:1123–37.CrossRefPubMed
24.
go back to reference Biggin M, Farrell PJ, Barrell BG. Transcription and DNA sequence of the BamHI L fragment of B95-8 Epstein-Barr virus. EMBO J. 1984;3:1083–90.PubMedCentralPubMed Biggin M, Farrell PJ, Barrell BG. Transcription and DNA sequence of the BamHI L fragment of B95-8 Epstein-Barr virus. EMBO J. 1984;3:1083–90.PubMedCentralPubMed
25.
go back to reference Jun-ichi M, Satoshi T, Kimi A, Fumi T, Akira T, Kiyoshi T, et al. Expression vector system based on the chicken β-actin promoter directs efficient production of interleukin-5. Gene. 1989;79:269–77.CrossRef Jun-ichi M, Satoshi T, Kimi A, Fumi T, Akira T, Kiyoshi T, et al. Expression vector system based on the chicken β-actin promoter directs efficient production of interleukin-5. Gene. 1989;79:269–77.CrossRef
26.
go back to reference Pantua HD, McGinnes LW, Peeples ME, Morrison TG. Requirements for the assembly and release of Newcastle disease virus-like particles. J Virolol. 2006;80:11062–73.CrossRef Pantua HD, McGinnes LW, Peeples ME, Morrison TG. Requirements for the assembly and release of Newcastle disease virus-like particles. J Virolol. 2006;80:11062–73.CrossRef
27.
go back to reference McGinnes LW, Morrison TG. Newcastle disease virus‐like particles: preparation, purification, quantification, and incorporation of foreign glycoproteins. Curr Protoc Microbiol. 2013;18.12:11–8. 12. 21. McGinnes LW, Morrison TG. Newcastle disease virus‐like particles: preparation, purification, quantification, and incorporation of foreign glycoproteins. Curr Protoc Microbiol. 2013;18.12:11–8. 12. 21.
28.
go back to reference Muratori C, D’Aloja P, Superti F, Tinari A, Sol-Foulon N, Sparacio S, et al. Generation and characterization of a stable cell population releasing fluorescent HIV-1-based Virus Like Particles in an inducible way. BMC Biotechnol. 2006;6:52.CrossRefPubMedCentralPubMed Muratori C, D’Aloja P, Superti F, Tinari A, Sol-Foulon N, Sparacio S, et al. Generation and characterization of a stable cell population releasing fluorescent HIV-1-based Virus Like Particles in an inducible way. BMC Biotechnol. 2006;6:52.CrossRefPubMedCentralPubMed
29.
go back to reference McGinnes LW, Reitter JN, Gravel K, Morrison TG. Evidence for mixed membrane topology of the newcastle disease virus fusion protein. J Virolol. 2003;77:1951–63.CrossRef McGinnes LW, Reitter JN, Gravel K, Morrison TG. Evidence for mixed membrane topology of the newcastle disease virus fusion protein. J Virolol. 2003;77:1951–63.CrossRef
30.
go back to reference Battisti AJ, Meng G, Winkler DC, McGinnes LW, Plevka P, Steven AC, et al. Structure and assembly of a paramyxovirus matrix protein. Proc Natl Acad Sci. 2012;109:13996–4000.CrossRefPubMedCentralPubMed Battisti AJ, Meng G, Winkler DC, McGinnes LW, Plevka P, Steven AC, et al. Structure and assembly of a paramyxovirus matrix protein. Proc Natl Acad Sci. 2012;109:13996–4000.CrossRefPubMedCentralPubMed
31.
go back to reference Ghiran I, Glodek AM, Weaver G, Klickstein LB, Nicholson-Weller A. Ligation of erythrocyte CR1 induces its clustering in complex with scaffolding protein FAP-1. Blood. 2008;112:3465–73.CrossRefPubMedCentralPubMed Ghiran I, Glodek AM, Weaver G, Klickstein LB, Nicholson-Weller A. Ligation of erythrocyte CR1 induces its clustering in complex with scaffolding protein FAP-1. Blood. 2008;112:3465–73.CrossRefPubMedCentralPubMed
32.
go back to reference Murawski MR, McGinnes LW, Finberg RW, Kurt-Jones EA, Massare MJ, Smith G, et al. Newcastle disease virus-like particles containing respiratory syncytial virus G protein induced protection in BALB/c mice, with no evidence of immunopathology. J Virol. 2010;84:1110–23.CrossRefPubMedCentralPubMed Murawski MR, McGinnes LW, Finberg RW, Kurt-Jones EA, Massare MJ, Smith G, et al. Newcastle disease virus-like particles containing respiratory syncytial virus G protein induced protection in BALB/c mice, with no evidence of immunopathology. J Virol. 2010;84:1110–23.CrossRefPubMedCentralPubMed
33.
go back to reference Sashihara J, Burbelo PD, Savoldo B, Pierson TC, Cohen JI. Human antibody titers to Epstein-Barr Virus (EBV) gp350 correlate with neutralization of infectivity better than antibody titers to EBV gp42 using a rapid flow cytometry-based EBV neutralization assay. Virology. 2009;391:249–56.CrossRefPubMedCentralPubMed Sashihara J, Burbelo PD, Savoldo B, Pierson TC, Cohen JI. Human antibody titers to Epstein-Barr Virus (EBV) gp350 correlate with neutralization of infectivity better than antibody titers to EBV gp42 using a rapid flow cytometry-based EBV neutralization assay. Virology. 2009;391:249–56.CrossRefPubMedCentralPubMed
34.
go back to reference Pantua H, McGinnes LW, Leszyk J, Morrison TG. Characterization of an alternate form of Newcastle disease virus fusion protein. J Virol. 2005;79:11660–70.CrossRefPubMedCentralPubMed Pantua H, McGinnes LW, Leszyk J, Morrison TG. Characterization of an alternate form of Newcastle disease virus fusion protein. J Virol. 2005;79:11660–70.CrossRefPubMedCentralPubMed
35.
go back to reference McGinnes LW, Gravel KA, Finberg RW, Kurt-Jones EA, Massare MJ, Smith G, et al. Assembly and immunological properties of Newcastle disease virus-like particles containing the respiratory syncytial virus F and G proteins. J Virol. 2011;85:366–77.CrossRefPubMedCentralPubMed McGinnes LW, Gravel KA, Finberg RW, Kurt-Jones EA, Massare MJ, Smith G, et al. Assembly and immunological properties of Newcastle disease virus-like particles containing the respiratory syncytial virus F and G proteins. J Virol. 2011;85:366–77.CrossRefPubMedCentralPubMed
36.
go back to reference Tanner J, Whang Y, Sample J, Sears A, Kieff E. Soluble gp350/220 and deletion mutant glycoproteins block Epstein-Barr virus adsorption to lymphocytes. J Virol. 1988;62:4452–64.PubMedCentralPubMed Tanner J, Whang Y, Sample J, Sears A, Kieff E. Soluble gp350/220 and deletion mutant glycoproteins block Epstein-Barr virus adsorption to lymphocytes. J Virol. 1988;62:4452–64.PubMedCentralPubMed
37.
go back to reference Germi R, Effantin G, Grossi L, Ruigrok RW, Morand P, Schoehn G. Three-dimensional structure of the Epstein–Barr virus capsid. J Gen Virol. 2012;93:1769–73.CrossRefPubMed Germi R, Effantin G, Grossi L, Ruigrok RW, Morand P, Schoehn G. Three-dimensional structure of the Epstein–Barr virus capsid. J Gen Virol. 2012;93:1769–73.CrossRefPubMed
38.
go back to reference Braun M, Jandus C, Maurer P, Hammann-Haenni A, Schwarz K, Bachmann MF, et al. Virus-like particles induce robust human T-helper cell responses. Eur J Immunol. 2012;42:330–40.CrossRefPubMed Braun M, Jandus C, Maurer P, Hammann-Haenni A, Schwarz K, Bachmann MF, et al. Virus-like particles induce robust human T-helper cell responses. Eur J Immunol. 2012;42:330–40.CrossRefPubMed
39.
go back to reference Civoli F, Kroenke MA, Reynhardt K, Zhuang Y, Kaliyaperumal A, Gupta S. Development and optimization of neutralizing antibody assays to monitor clinical immunogenicity. Bioanalysis. 2012;4:2725–35.CrossRefPubMed Civoli F, Kroenke MA, Reynhardt K, Zhuang Y, Kaliyaperumal A, Gupta S. Development and optimization of neutralizing antibody assays to monitor clinical immunogenicity. Bioanalysis. 2012;4:2725–35.CrossRefPubMed
40.
go back to reference Epstein MA. Epstein-Barr virus–is it time to develop a vaccine program? J Natl Cancer Inst. 1976;56:697–700.PubMed Epstein MA. Epstein-Barr virus–is it time to develop a vaccine program? J Natl Cancer Inst. 1976;56:697–700.PubMed
41.
go back to reference Dudek T, Knipe DM. Replication-defective viruses as vaccines and vaccine vectors. Virology. 2006;344:230–9.CrossRefPubMed Dudek T, Knipe DM. Replication-defective viruses as vaccines and vaccine vectors. Virology. 2006;344:230–9.CrossRefPubMed
42.
go back to reference Mok H, Cheng X, Xu Q, Zengel JR, Parhy B, Zhao J, et al. Evaluation of measles vaccine virus as a vector to deliver respiratory syncytial virus fusion protein or Epstein-Barr virus glycoprotein gp350. Open Virol J. 2012;6:12.CrossRefPubMedCentralPubMed Mok H, Cheng X, Xu Q, Zengel JR, Parhy B, Zhao J, et al. Evaluation of measles vaccine virus as a vector to deliver respiratory syncytial virus fusion protein or Epstein-Barr virus glycoprotein gp350. Open Virol J. 2012;6:12.CrossRefPubMedCentralPubMed
43.
go back to reference Taylor GS, Jia H, Harrington K, Lee LW, Turner J, Ladell K, et al. A recombinant modified vaccinia Ankara vaccine encoding Epstein-Barr Virus (EBV) target antigens: a phase I trial in UK patients with EBV-positive cancer. Clin Cancer Res. 2014;20:5009–22.CrossRefPubMed Taylor GS, Jia H, Harrington K, Lee LW, Turner J, Ladell K, et al. A recombinant modified vaccinia Ankara vaccine encoding Epstein-Barr Virus (EBV) target antigens: a phase I trial in UK patients with EBV-positive cancer. Clin Cancer Res. 2014;20:5009–22.CrossRefPubMed
45.
go back to reference Cui X, Cao Z, Sen G, Chattopadhyay G, Fuller DH, Fuller JT, et al. A novel tetrameric gp350 1–470 as a potential Epstein-Barr virus vaccine. Vaccine. 2013;31:3039–45.CrossRefPubMedCentralPubMed Cui X, Cao Z, Sen G, Chattopadhyay G, Fuller DH, Fuller JT, et al. A novel tetrameric gp350 1–470 as a potential Epstein-Barr virus vaccine. Vaccine. 2013;31:3039–45.CrossRefPubMedCentralPubMed
46.
go back to reference Moutschen M, Leonard P, Sokal EM, Smets F, Haumont M, Mazzu P, et al. Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein-Barr virus vaccine in healthy adults. Vaccine. 2007;25:4697–705.CrossRefPubMed Moutschen M, Leonard P, Sokal EM, Smets F, Haumont M, Mazzu P, et al. Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein-Barr virus vaccine in healthy adults. Vaccine. 2007;25:4697–705.CrossRefPubMed
47.
go back to reference Rees L, Tizard EJ, Morgan AJ, Cubitt WD, Finerty S, Oyewole-Eletu TA, et al. A phase I trial of epstein-barr virus gp350 vaccine for children with chronic kidney disease awaiting transplantation. Transplantation. 2009;88:1025–9.CrossRefPubMed Rees L, Tizard EJ, Morgan AJ, Cubitt WD, Finerty S, Oyewole-Eletu TA, et al. A phase I trial of epstein-barr virus gp350 vaccine for children with chronic kidney disease awaiting transplantation. Transplantation. 2009;88:1025–9.CrossRefPubMed
49.
go back to reference Hesse F, Wagner R. Developments and improvements in the manufacturing of human therapeutics with mammalian cell cultures. Trends Biotechnol. 2000;18:173–80.CrossRefPubMed Hesse F, Wagner R. Developments and improvements in the manufacturing of human therapeutics with mammalian cell cultures. Trends Biotechnol. 2000;18:173–80.CrossRefPubMed
50.
go back to reference Chatterjee B, Leung CS, Münz C. Animal models of Epstein Barr virus infection. J Immunol Methods. 2014;410:80–7.CrossRefPubMed Chatterjee B, Leung CS, Münz C. Animal models of Epstein Barr virus infection. J Immunol Methods. 2014;410:80–7.CrossRefPubMed
51.
go back to reference Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H, et al. A new humanized mouse model of Epstein-Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J Infect Dis. 2008;198:673–82.CrossRefPubMed Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H, et al. A new humanized mouse model of Epstein-Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J Infect Dis. 2008;198:673–82.CrossRefPubMed
52.
go back to reference Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A. 1992;89:12180–4.CrossRefPubMedCentralPubMed Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A. 1992;89:12180–4.CrossRefPubMedCentralPubMed
53.
go back to reference Koutsky LA, Ault KA, Wheeler CM, Brown DR, Barr E, Alvarez FB, et al. A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med. 2002;347:1645–51.CrossRefPubMed Koutsky LA, Ault KA, Wheeler CM, Brown DR, Barr E, Alvarez FB, et al. A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med. 2002;347:1645–51.CrossRefPubMed
Metadata
Title
A chimeric EBV gp350/220-based VLP replicates the virion B-cell attachment mechanism and elicits long-lasting neutralizing antibodies in mice
Authors
Javier Gordon Ogembo
Matthew R Muraswki
Lori W McGinnes
Agapi Parcharidou
Rujapak Sutiwisesak
Timelia Tison
Juan Avendano
Deep Agnani
Robert W Finberg
Trudy G Morrison
Joyce D Fingeroth
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0415-2

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.