Skip to main content
Top
Published in: Diabetologia 12/2016

Open Access 01-12-2016 | Article

A beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion in mice

Authors: Camille Attané, Marie-Line Peyot, Roxane Lussier, Pegah Poursharifi, Shangang Zhao, Dongwei Zhang, Johane Morin, Marco Pineda, Shupei Wang, Olivier Dumortier, Neil B. Ruderman, Grant A. Mitchell, Brigitte Simons, S. R. Murthy Madiraju, Erik Joly, Marc Prentki

Published in: Diabetologia | Issue 12/2016

Login to get access

Abstract

Aims/hypothesis

To directly assess the role of beta cell lipolysis in insulin secretion and whole-body energy homeostasis, inducible beta cell-specific adipose triglyceride lipase (ATGL)-deficient (B-Atgl-KO) mice were studied under normal diet (ND) and high-fat diet (HFD) conditions.

Methods

Atgl flox/flox mice were cross-bred with Mip-Cre-ERT mice to generate Mip-Cre-ERT/+;Atgl flox/flox mice. At 8 weeks of age, these mice were injected with tamoxifen to induce deletion of beta cell-specific Atgl (also known as Pnpla2), and the mice were fed an ND or HFD.

Results

ND-fed male B-Atgl-KO mice showed decreased insulinaemia and glucose-induced insulin secretion (GSIS) in vivo. Changes in GSIS correlated with the islet content of long-chain saturated monoacylglycerol (MAG) species that have been proposed to be metabolic coupling factors for insulin secretion. Exogenous MAGs restored GSIS in B-Atgl-KO islets. B-Atgl-KO male mice fed an HFD showed reduced insulinaemia, glycaemia in the fasted and fed states and after glucose challenge, as well as enhanced insulin sensitivity. Moreover, decreased insulinaemia in B-Atgl-KO mice was associated with increased energy expenditure, and lipid metabolism in brown (BAT) and white (WAT) adipose tissues, leading to reduced fat mass and body weight.

Conclusions/interpretation

ATGL in beta cells regulates insulin secretion via the production of signalling MAGs. Decreased insulinaemia due to lowered GSIS protects B-Atgl-KO mice from diet-induced obesity, improves insulin sensitivity, increases lipid mobilisation from WAT and causes BAT activation. The results support the concept that fuel excess can drive obesity and diabetes via hyperinsulinaemia, and that an islet beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jeanrenaud B (1978) Hyperinsulinemia in obesity syndromes: its metabolic consequences and possible etiology. Metabolism 27:1881–1892CrossRefPubMed Jeanrenaud B (1978) Hyperinsulinemia in obesity syndromes: its metabolic consequences and possible etiology. Metabolism 27:1881–1892CrossRefPubMed
2.
go back to reference Nolan CJ, Damm P, Prentki M (2011) Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 378:169–181CrossRefPubMed Nolan CJ, Damm P, Prentki M (2011) Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 378:169–181CrossRefPubMed
3.
5.
go back to reference Alemzadeh R, Karlstad MD, Tushaus K, Buchholz M (2008) Diazoxide enhances basal metabolic rate and fat oxidation in obese Zucker rats. Metabolism 57:1597–1607CrossRefPubMed Alemzadeh R, Karlstad MD, Tushaus K, Buchholz M (2008) Diazoxide enhances basal metabolic rate and fat oxidation in obese Zucker rats. Metabolism 57:1597–1607CrossRefPubMed
6.
go back to reference Mehran AE, Templeman NM, Brigidi GS et al (2012) Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab 16:723–737CrossRefPubMed Mehran AE, Templeman NM, Brigidi GS et al (2012) Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab 16:723–737CrossRefPubMed
7.
go back to reference Templeman NM, Clee SM, Johnson JD (2015) Suppression of hyperinsulinaemia in growing female mice provides long-term protection against obesity. Diabetologia 58:2392–2402CrossRefPubMedPubMedCentral Templeman NM, Clee SM, Johnson JD (2015) Suppression of hyperinsulinaemia in growing female mice provides long-term protection against obesity. Diabetologia 58:2392–2402CrossRefPubMedPubMedCentral
8.
go back to reference Nolan CJ, Prentki M (2008) The islet β-cell: fuel responsive and vulnerable. Trends Endocrinol Metab 19:285–291CrossRefPubMed Nolan CJ, Prentki M (2008) The islet β-cell: fuel responsive and vulnerable. Trends Endocrinol Metab 19:285–291CrossRefPubMed
9.
go back to reference Zimmermann R, Strauss JG, Haemmerle G et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386CrossRefPubMed Zimmermann R, Strauss JG, Haemmerle G et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386CrossRefPubMed
10.
go back to reference Schweiger M, Schreiber R, Haemmerle G et al (2006) Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 281:40236–40241CrossRefPubMed Schweiger M, Schreiber R, Haemmerle G et al (2006) Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 281:40236–40241CrossRefPubMed
11.
go back to reference Prentki M, Madiraju SRM (2008) Glycerolipid metabolism and signaling in health and disease. Endocr Rev 29:647–676CrossRefPubMed Prentki M, Madiraju SRM (2008) Glycerolipid metabolism and signaling in health and disease. Endocr Rev 29:647–676CrossRefPubMed
12.
13.
go back to reference Zhao S, Mugabo Y, Iglesias J et al (2014) α/β-Hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion. Cell Metab 19:993–1007CrossRefPubMed Zhao S, Mugabo Y, Iglesias J et al (2014) α/β-Hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion. Cell Metab 19:993–1007CrossRefPubMed
14.
go back to reference Prentki M, Matschinsky FM, Madiraju SRM (2013) Metabolic signaling in fuel-induced insulin secretion. Cell Metab 18:162–185CrossRefPubMed Prentki M, Matschinsky FM, Madiraju SRM (2013) Metabolic signaling in fuel-induced insulin secretion. Cell Metab 18:162–185CrossRefPubMed
15.
go back to reference Mulder H, Yang S, Winzell MS et al (2004) Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion. Diabetes 53:122–128CrossRefPubMed Mulder H, Yang S, Winzell MS et al (2004) Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion. Diabetes 53:122–128CrossRefPubMed
16.
go back to reference Masiello P, Novelli M, Bombara M et al (2002) The antilipolytic agent 3,5-dimethylpyrazole inhibits insulin release in response to both nutrient secretagogues and cyclic adenosine monophosphate agonists in isolated rat islets. Metabolism 51:110–114CrossRefPubMed Masiello P, Novelli M, Bombara M et al (2002) The antilipolytic agent 3,5-dimethylpyrazole inhibits insulin release in response to both nutrient secretagogues and cyclic adenosine monophosphate agonists in isolated rat islets. Metabolism 51:110–114CrossRefPubMed
17.
go back to reference Peyot ML, Nolan CJ, Soni K et al (2004) Hormone-sensitive lipase has a role in lipid signaling for insulin secretion but is nonessential for the incretin action of glucagon-like peptide 1. Diabetes 53:1733–1742CrossRefPubMed Peyot ML, Nolan CJ, Soni K et al (2004) Hormone-sensitive lipase has a role in lipid signaling for insulin secretion but is nonessential for the incretin action of glucagon-like peptide 1. Diabetes 53:1733–1742CrossRefPubMed
18.
go back to reference Fex M, Haemmerle G, Wierup N et al (2009) A beta cell-specific knockout of hormone-sensitive lipase in mice results in hyperglycaemia and disruption of exocytosis. Diabetologia 52:271–280CrossRefPubMed Fex M, Haemmerle G, Wierup N et al (2009) A beta cell-specific knockout of hormone-sensitive lipase in mice results in hyperglycaemia and disruption of exocytosis. Diabetologia 52:271–280CrossRefPubMed
19.
go back to reference Peyot M-L, Guay C, Latour MG et al (2009) Adipose triglyceride lipase is implicated in fuel- and non-fuel-stimulated insulin secretion. J Biol Chem 284:16848–16859CrossRefPubMedPubMedCentral Peyot M-L, Guay C, Latour MG et al (2009) Adipose triglyceride lipase is implicated in fuel- and non-fuel-stimulated insulin secretion. J Biol Chem 284:16848–16859CrossRefPubMedPubMedCentral
20.
go back to reference Haemmerle G, Lass A, Zimmermann R et al (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312:734–737CrossRefPubMed Haemmerle G, Lass A, Zimmermann R et al (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312:734–737CrossRefPubMed
21.
go back to reference Hoy AJ, Bruce CR, Turpin SM et al (2011) Adipose triglyceride lipase-null mice are resistant to high-fat diet-induced insulin resistance despite reduced energy expenditure and ectopic lipid accumulation. Endocrinology 152:48–58CrossRefPubMed Hoy AJ, Bruce CR, Turpin SM et al (2011) Adipose triglyceride lipase-null mice are resistant to high-fat diet-induced insulin resistance despite reduced energy expenditure and ectopic lipid accumulation. Endocrinology 152:48–58CrossRefPubMed
22.
go back to reference Zhao S, Mugabo Y, Ballentine G et al (2016) α/β-Hydrolase domain-6 deletion induces adipose browning and prevents obesity and type-2 diabetes. Cell Rep 14:2872–2888CrossRefPubMed Zhao S, Mugabo Y, Ballentine G et al (2016) α/β-Hydrolase domain-6 deletion induces adipose browning and prevents obesity and type-2 diabetes. Cell Rep 14:2872–2888CrossRefPubMed
23.
go back to reference Even PC, Nadkarni NA (2012) Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. Am J Physiol Regul Integr Comp Physiol 303:R459–R476CrossRefPubMed Even PC, Nadkarni NA (2012) Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. Am J Physiol Regul Integr Comp Physiol 303:R459–R476CrossRefPubMed
24.
go back to reference Zhao S, Poursharafi P, Mugabo Y et al (2015) α/β-Hydrolase Domain-6 and saturated long chain monoacylglycerol regulate insulin secretion promoted by both fuel and non-fuel stimuli. Mol Metab 4:940–950CrossRefPubMedPubMedCentral Zhao S, Poursharafi P, Mugabo Y et al (2015) α/β-Hydrolase Domain-6 and saturated long chain monoacylglycerol regulate insulin secretion promoted by both fuel and non-fuel stimuli. Mol Metab 4:940–950CrossRefPubMedPubMedCentral
25.
go back to reference Fergusson G, Éthier M, Guévremont M et al (2014) Defective insulin secretory response to intravenous glucose in C57Bl/6J compared to C57Bl/6N mice. Mol Metab 3:848–854CrossRefPubMedPubMedCentral Fergusson G, Éthier M, Guévremont M et al (2014) Defective insulin secretory response to intravenous glucose in C57Bl/6J compared to C57Bl/6N mice. Mol Metab 3:848–854CrossRefPubMedPubMedCentral
26.
go back to reference Attané C, Daviaud D, Dray C et al (2011) Apelin stimulates glucose uptake but not lipolysis in human adipose tissue ex vivo. J Mol Endocrinol 46:21–28CrossRefPubMed Attané C, Daviaud D, Dray C et al (2011) Apelin stimulates glucose uptake but not lipolysis in human adipose tissue ex vivo. J Mol Endocrinol 46:21–28CrossRefPubMed
27.
go back to reference Wicksteed B, Brissova M, Yan W et al (2010) Conditional gene targeting in mouse pancreatic β-cells. Diabetes 59:3090-3098. Wicksteed B, Brissova M, Yan W et al (2010) Conditional gene targeting in mouse pancreatic β-cells. Diabetes 59:3090-3098.
28.
go back to reference Tamarina NA, Roe MW, Philipson LH (2014) Characterization of mice expressing Ins1 gene promoter driven CreERT recombinase for conditional gene deletion in pancreatic β-cells. Islets 6:37–41CrossRef Tamarina NA, Roe MW, Philipson LH (2014) Characterization of mice expressing Ins1 gene promoter driven CreERT recombinase for conditional gene deletion in pancreatic β-cells. Islets 6:37–41CrossRef
29.
go back to reference Tang T, Abbott MJ, Ahmadian M et al (2013) Desnutrin/ATGL activates PPAR d to promote mitochondrial function for insulin secretion in islet b cells. Cell Metab 18:883–895CrossRefPubMed Tang T, Abbott MJ, Ahmadian M et al (2013) Desnutrin/ATGL activates PPAR d to promote mitochondrial function for insulin secretion in islet b cells. Cell Metab 18:883–895CrossRefPubMed
30.
go back to reference Ortega-Molina A, Efeyan A, Lopez-Guadamillas E et al (2012) Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab 15:382–394CrossRefPubMed Ortega-Molina A, Efeyan A, Lopez-Guadamillas E et al (2012) Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab 15:382–394CrossRefPubMed
31.
go back to reference Ortega-Molina A, Lopez-Guadamillas E, De Cabo R, Serrano M (2015) Pharmacological inhibition of PI3K reduces adiposity and metabolic syndrome in obese mice and rhesus monkeys. Cell Metab 21:1–13CrossRef Ortega-Molina A, Lopez-Guadamillas E, De Cabo R, Serrano M (2015) Pharmacological inhibition of PI3K reduces adiposity and metabolic syndrome in obese mice and rhesus monkeys. Cell Metab 21:1–13CrossRef
32.
go back to reference Freeman H, Shimomura K, Cox RD, Ashcroft FM (2006) Nicotinamide nucleotide transhydrogenase: a link between insulin secretion, glucose metabolism and oxidative stress. Biochem Soc Trans 34:806–810CrossRefPubMed Freeman H, Shimomura K, Cox RD, Ashcroft FM (2006) Nicotinamide nucleotide transhydrogenase: a link between insulin secretion, glucose metabolism and oxidative stress. Biochem Soc Trans 34:806–810CrossRefPubMed
33.
go back to reference Freeman HC, Hugill A, Dear NT et al (2006) Deletion of Nicotinamide nucleotide transhydrogenase: a new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes 55:2153–2156CrossRefPubMed Freeman HC, Hugill A, Dear NT et al (2006) Deletion of Nicotinamide nucleotide transhydrogenase: a new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes 55:2153–2156CrossRefPubMed
34.
go back to reference Oropeza D, Jouvet N, Budry L et al (2015) Phenotypic characterization of MIP-CreERT1Lphi mice with transgene-driven islet expression of human growth hormone. Diabetes 64:3798–3807CrossRefPubMedPubMedCentral Oropeza D, Jouvet N, Budry L et al (2015) Phenotypic characterization of MIP-CreERT1Lphi mice with transgene-driven islet expression of human growth hormone. Diabetes 64:3798–3807CrossRefPubMedPubMedCentral
Metadata
Title
A beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion in mice
Authors
Camille Attané
Marie-Line Peyot
Roxane Lussier
Pegah Poursharifi
Shangang Zhao
Dongwei Zhang
Johane Morin
Marco Pineda
Shupei Wang
Olivier Dumortier
Neil B. Ruderman
Grant A. Mitchell
Brigitte Simons
S. R. Murthy Madiraju
Erik Joly
Marc Prentki
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 12/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4105-2

Other articles of this Issue 12/2016

Diabetologia 12/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.