Skip to main content
Top
Published in: Journal of Translational Medicine 1/2017

Open Access 01-12-2017 | Methodology

9.4 T small animal MRI using clinical components for direct translational studies

Authors: Jörg Felder, A. Avdo Celik, Chang-Hoon Choi, Stefan Schwan, N. Jon Shah

Published in: Journal of Translational Medicine | Issue 1/2017

Login to get access

Abstract

Background

Magnetic resonance is a major preclinical and clinical imaging modality ideally suited for longitudinal studies, e.g. in pharmacological developments. The lack of a proven platform that maintains an identical imaging protocol between preclinical and clinical platforms is solved with the construction of an animal scanner based on clinical hard- and software.

Methods

A small animal magnet and gradient system were connected to a clinical MR system. Several hardware components were either modified or built in-house to achieve compatibility. The clinical software was modified to account for the different field-of-view of a preclinical MR system. The established scanner was evaluated using clinical QA protocols, and platform compatibility for translational research was verified against clinical scanners of different field strength.

Results

The constructed animal scanner operates with the majority of clinical imaging sequences. Translational research is greatly facilitated as protocols can be shared between preclinical and clinical platforms. Hence, when maintaining sequences parameters, maximum similarity between pulses played out on a human or an animal system is maintained.

Conclusion

Coupling of a small animal magnet with a clinical MR system is a flexible, easy to use way to establish and advance translational imaging capability. It provides cost and labor efficient translational capability as no tedious sequence reprogramming between moieties is required and cross-platform compatibility of sequences facilitates multi-center studies.
Literature
2.
go back to reference Rubio DM, Schoenbaum EE, Lee LS, Schteingart DE, Marantz PR, Anderson KE, et al. Defining translational research: implications for training. Acad Med. 2010;85(3):470–5.CrossRefPubMedPubMedCentral Rubio DM, Schoenbaum EE, Lee LS, Schteingart DE, Marantz PR, Anderson KE, et al. Defining translational research: implications for training. Acad Med. 2010;85(3):470–5.CrossRefPubMedPubMedCentral
4.
go back to reference Brockmann MA, Kemmling A, Groden C. Current issues and perspectives in small rodent magnetic resonance imaging using clinical MRI scanners. Methods. 2007;43(1):79–87.CrossRefPubMed Brockmann MA, Kemmling A, Groden C. Current issues and perspectives in small rodent magnetic resonance imaging using clinical MRI scanners. Methods. 2007;43(1):79–87.CrossRefPubMed
5.
go back to reference Russell WMS, Burch RL. The principles of humane experimental technique. London: Methuen; 1959. p. 238. Russell WMS, Burch RL. The principles of humane experimental technique. London: Methuen; 1959. p. 238.
6.
go back to reference Cunha L, Horvath I, Ferreira S, Lemos J, Costa P, Vieira D, et al. Preclinical imaging: an essential ally in modern biosciences. Mol Diagn Ther. 2014;18(2):153–73.CrossRefPubMed Cunha L, Horvath I, Ferreira S, Lemos J, Costa P, Vieira D, et al. Preclinical imaging: an essential ally in modern biosciences. Mol Diagn Ther. 2014;18(2):153–73.CrossRefPubMed
7.
go back to reference Comley J. In vivo preclinical imaging: an essential tool in translational research. Drug Discov World. 2011;12(Summer):58–71. Comley J. In vivo preclinical imaging: an essential tool in translational research. Drug Discov World. 2011;12(Summer):58–71.
8.
go back to reference Jakob P. Small animal magnetic resonance imaging: basic principles, instrumentation and practical issue. In: Kiessling F, Pichler JB, editors. Small animal imaging: basics and practical guide. Berlin: Springer Berlin Heidelberg; 2011. p. 151–64.CrossRef Jakob P. Small animal magnetic resonance imaging: basic principles, instrumentation and practical issue. In: Kiessling F, Pichler JB, editors. Small animal imaging: basics and practical guide. Berlin: Springer Berlin Heidelberg; 2011. p. 151–64.CrossRef
9.
go back to reference Poon CS, Henkelman RM. Practical T2 quantitation for clinical applications. J Magn Reson Imaging. 1992;2(5):541–53.CrossRefPubMed Poon CS, Henkelman RM. Practical T2 quantitation for clinical applications. J Magn Reson Imaging. 1992;2(5):541–53.CrossRefPubMed
11.
go back to reference Moffat BA, Galban CJ, Rehemtulla A. Advanced MRI: translation from animal to human in brain tumor research. Neuroimaging Clin N Am. 2009;19(4):517–26.CrossRefPubMedPubMedCentral Moffat BA, Galban CJ, Rehemtulla A. Advanced MRI: translation from animal to human in brain tumor research. Neuroimaging Clin N Am. 2009;19(4):517–26.CrossRefPubMedPubMedCentral
12.
go back to reference Fox GB, Chin CL, Luo F, Day M, Cox BF. Translational neuroimaging of the CNS: novel pathways to drug development. Mol Interv. 2009;9(6):302–13.CrossRefPubMed Fox GB, Chin CL, Luo F, Day M, Cox BF. Translational neuroimaging of the CNS: novel pathways to drug development. Mol Interv. 2009;9(6):302–13.CrossRefPubMed
13.
go back to reference Sakoglu U, Upadhyay J, Chin CL, Chandran P, Baker SJ, Cole TB, et al. Paradigm shift in translational neuroimaging of CNS disorders. Biochem Pharmacol. 2011;81(12):1374–87.CrossRefPubMed Sakoglu U, Upadhyay J, Chin CL, Chandran P, Baker SJ, Cole TB, et al. Paradigm shift in translational neuroimaging of CNS disorders. Biochem Pharmacol. 2011;81(12):1374–87.CrossRefPubMed
14.
go back to reference Felder J, Choi CH, Schwan S, Celik AA, Yun SD, da Silva NA, et al., editors. 9.4 T animal scanner for translation research with binary compatibility to human scanner and clinical UI. In: Proceedings 24th scientific meeting, international society for magnetic resonance in medicine; 2016 May. Singapore: Proceedings 24th scientific meeting, international society for magnetic resonance in medicine. Felder J, Choi CH, Schwan S, Celik AA, Yun SD, da Silva NA, et al., editors. 9.4 T animal scanner for translation research with binary compatibility to human scanner and clinical UI. In: Proceedings 24th scientific meeting, international society for magnetic resonance in medicine; 2016 May. Singapore: Proceedings 24th scientific meeting, international society for magnetic resonance in medicine.
15.
go back to reference Choi CH, Ha Y, Veeraiah P, Felder J, Mollenhoff K, Shah NJ. Design and implementation of a simple multinuclear MRI system for ultra high-field imaging of animals. J Magn Reson. 2016;273:28–32.CrossRefPubMed Choi CH, Ha Y, Veeraiah P, Felder J, Mollenhoff K, Shah NJ. Design and implementation of a simple multinuclear MRI system for ultra high-field imaging of animals. J Magn Reson. 2016;273:28–32.CrossRefPubMed
16.
go back to reference Hoffmann J, Shajan G, Scheffler K, Pohmann R, editors. RF Shimming Capabilities at 9.4 Tesla using a 16-channel Dual-Row Array. In: Proceedings 21st scientific meeting, international society for magnetic resonance in medicine; 2013 April 20–26. Salt Lake City: Proceedings 21st scientific meeting, international society for magnetic resonance in medicine. Hoffmann J, Shajan G, Scheffler K, Pohmann R, editors. RF Shimming Capabilities at 9.4 Tesla using a 16-channel Dual-Row Array. In: Proceedings 21st scientific meeting, international society for magnetic resonance in medicine; 2013 April 20–26. Salt Lake City: Proceedings 21st scientific meeting, international society for magnetic resonance in medicine.
17.
go back to reference Felder J, Hong S, Celik A, Park J, Geschewski F, Jeong H, et al., editors. RF coil array for accelerated excitation in three dimensions. In: Proceedings 20th scientific meeting, international society for magnetic resonance in medicine; 2012 May. Melbourne: Proceedings 20th scientific meeting, international society for magnetic resonance in medicine. Felder J, Hong S, Celik A, Park J, Geschewski F, Jeong H, et al., editors. RF coil array for accelerated excitation in three dimensions. In: Proceedings 20th scientific meeting, international society for magnetic resonance in medicine; 2012 May. Melbourne: Proceedings 20th scientific meeting, international society for magnetic resonance in medicine.
18.
go back to reference De Graaf RA. In vivo NMR spectroscopy: principles and techniques, 2nd edn. Chichester: John Wiley & Sons; 2007. xxi, p. 570, p. 8 of plates p. De Graaf RA. In vivo NMR spectroscopy: principles and techniques, 2nd edn. Chichester: John Wiley & Sons; 2007. xxi, p. 570, p. 8 of plates p.
19.
go back to reference Jenkinson M. Fast, automated, N-dimensional phase-unwrapping algorithm. Magn Reson Med. 2003;49(1):193–7.CrossRefPubMed Jenkinson M. Fast, automated, N-dimensional phase-unwrapping algorithm. Magn Reson Med. 2003;49(1):193–7.CrossRefPubMed
20.
go back to reference Brenner D, Vahedipour K, Stöcker T, Shah NJ, editors. Gradient cycled actual flip angle imaging (GC-AFI). In: Proceedings 26th annual scientific meeting of the European society for magnetic resonance in medicine and biology; 2009 October 1–3. Antalya, Turkey. Brenner D, Vahedipour K, Stöcker T, Shah NJ, editors. Gradient cycled actual flip angle imaging (GC-AFI). In: Proceedings 26th annual scientific meeting of the European society for magnetic resonance in medicine and biology; 2009 October 1–3. Antalya, Turkey.
21.
go back to reference Wehrl HF, Judenhofer MS, Thielscher A, Martirosian P, Schick F, Pichler BJ. Assessment of MR compatibility of a PET insert developed for simultaneous multiparametric PET/MR imaging on an animal system operating at 7 T. Magn Reson Med. 2011;65(1):269–79.CrossRefPubMedPubMedCentral Wehrl HF, Judenhofer MS, Thielscher A, Martirosian P, Schick F, Pichler BJ. Assessment of MR compatibility of a PET insert developed for simultaneous multiparametric PET/MR imaging on an animal system operating at 7 T. Magn Reson Med. 2011;65(1):269–79.CrossRefPubMedPubMedCentral
22.
go back to reference Tofts PS, Barker GJ, Dean TL, Gallagher H, Gregory AP, Clarke RN. A low dielectric constant customized phantom design to measure RF coil nonuniformity. Magn Reson Imaging. 1997;15(1):69–75.CrossRefPubMed Tofts PS, Barker GJ, Dean TL, Gallagher H, Gregory AP, Clarke RN. A low dielectric constant customized phantom design to measure RF coil nonuniformity. Magn Reson Imaging. 1997;15(1):69–75.CrossRefPubMed
23.
go back to reference Meissner T, Wentz FJ. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans Geosci Remote Sens. 2004;42(9):1836–49.CrossRef Meissner T, Wentz FJ. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans Geosci Remote Sens. 2004;42(9):1836–49.CrossRef
24.
go back to reference Deelchand DK, Van de Moortele PF, Adriany G, Iltis I, Andersen P, Strupp JP, et al. In vivo 1H NMR spectroscopy of the human brain at 9.4 T: initial results. J Magn Reson. 2010;206(1):74–80.CrossRefPubMedPubMedCentral Deelchand DK, Van de Moortele PF, Adriany G, Iltis I, Andersen P, Strupp JP, et al. In vivo 1H NMR spectroscopy of the human brain at 9.4 T: initial results. J Magn Reson. 2010;206(1):74–80.CrossRefPubMedPubMedCentral
25.
go back to reference de Graaf RA, Brown PB, McIntyre S, Nixon TW, Behar KL, Rothman DL. High magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo. Magn Reson Med. 2006;56(2):386–94.CrossRefPubMed de Graaf RA, Brown PB, McIntyre S, Nixon TW, Behar KL, Rothman DL. High magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo. Magn Reson Med. 2006;56(2):386–94.CrossRefPubMed
26.
go back to reference Zhu J, Klarhöfer M, Santini F, Scheffler K, Bieri O, editors. Relaxation measurements in brain tissue at field strengths between 0.35T and 9.4 T. In: Proceedings 22nd scientific meeting, international society for magnetic resonance in medicine; 2014 May. Milan: Proceedings 22nd scientific meeting, international society for magnetic resonance in medicine. Zhu J, Klarhöfer M, Santini F, Scheffler K, Bieri O, editors. Relaxation measurements in brain tissue at field strengths between 0.35T and 9.4 T. In: Proceedings 22nd scientific meeting, international society for magnetic resonance in medicine; 2014 May. Milan: Proceedings 22nd scientific meeting, international society for magnetic resonance in medicine.
27.
go back to reference Kraff O, Quick HH. 7T: Physics, safety, and potential clinical applications. J Magn Reson Imaging. 2017;46(6):1573–89.CrossRefPubMed Kraff O, Quick HH. 7T: Physics, safety, and potential clinical applications. J Magn Reson Imaging. 2017;46(6):1573–89.CrossRefPubMed
28.
go back to reference Bastiani M, Oros-Peusquens AM, Seehaus A, Brenner D, Mollenhoff K, Celik A, et al. Automatic segmentation of human cortical layer-complexes and architectural areas using ex vivo diffusion MRI and its validation. Front Neurosci. 2016;10:487.CrossRefPubMedPubMedCentral Bastiani M, Oros-Peusquens AM, Seehaus A, Brenner D, Mollenhoff K, Celik A, et al. Automatic segmentation of human cortical layer-complexes and architectural areas using ex vivo diffusion MRI and its validation. Front Neurosci. 2016;10:487.CrossRefPubMedPubMedCentral
29.
go back to reference Roebroeck A, Oros-Peusquens AM, Brenner D, Moellenhoff K, Celik A, Felder J, et al., editors. Human cortical layers detected with diffusion MRI at 9.4 T. In: Proceedings 18th annual meeting of the organization for human brain mapping; 2012 June. Beijing: Proceedings 18th annual meeting of the organization for human brain mapping. Roebroeck A, Oros-Peusquens AM, Brenner D, Moellenhoff K, Celik A, Felder J, et al., editors. Human cortical layers detected with diffusion MRI at 9.4 T. In: Proceedings 18th annual meeting of the organization for human brain mapping; 2012 June. Beijing: Proceedings 18th annual meeting of the organization for human brain mapping.
30.
go back to reference Oros-Peusquens A, Hirsch S, Felder J, Celik A, Cremer M, Shah N, editors. Phase contrast in the post mortem rat brain: Comparison with T2* and histology. In: Proceedings 17th scientific meeting, international society for magnetic resonance in medicine; 2009 Apri. Honolulu: Proceedings 17th scientific meeting, international society for magnetic resonance in medicine. Oros-Peusquens A, Hirsch S, Felder J, Celik A, Cremer M, Shah N, editors. Phase contrast in the post mortem rat brain: Comparison with T2* and histology. In: Proceedings 17th scientific meeting, international society for magnetic resonance in medicine; 2009 Apri. Honolulu: Proceedings 17th scientific meeting, international society for magnetic resonance in medicine.
31.
go back to reference Mason GF, Krystal JH. MR spectroscopy: its potential role for drug development for the treatment of psychiatric diseases. NMR Biomed. 2006;19(6):690–701.CrossRefPubMed Mason GF, Krystal JH. MR spectroscopy: its potential role for drug development for the treatment of psychiatric diseases. NMR Biomed. 2006;19(6):690–701.CrossRefPubMed
Metadata
Title
9.4 T small animal MRI using clinical components for direct translational studies
Authors
Jörg Felder
A. Avdo Celik
Chang-Hoon Choi
Stefan Schwan
N. Jon Shah
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2017
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-017-1373-7

Other articles of this Issue 1/2017

Journal of Translational Medicine 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.