Skip to main content
Top
Published in: Radiation Oncology 1/2016

Open Access 01-12-2016 | Research

4DCT and CBCT based PTV margin in Stereotactic Body Radiotherapy(SBRT) of non-small cell lung tumor adhered to chest wall or diaphragm

Authors: Yi Li, Jing-lu Ma, Xin Chen, Feng-wen Tang, Xiao-zhi Zhang

Published in: Radiation Oncology | Issue 1/2016

Login to get access

Abstract

Background

Large tumor motion often leads to larger treatment volumes, especially the lung tumor located in lower lobe and adhered to chest wall or diaphragm. The purpose of this work is to investigate the impacts of planning target volume (PTV) margin on Stereotactic Body Radiotherapy (SBRT) in non-small cell lung cancer (NSCLC).

Methods

Subjects include 20 patients with the lung tumor located in lower lobe and adhered to chest wall or diaphragm who underwent SBRT. Four-dimensional computed tomography (4DCT) were acquired at simulation to evaluate the tumor intra-fractional centroid and boundary changes, and Cone-beam Computer Tomography (CBCT) were acquired during each treatment to evaluate the tumor inter-fractional set-up displacement. The margin to compensate for tumor variations uncertainties was calculated with various margin calculated recipes published in the exiting literatures.

Results

The means (±standard deviation) of tumor centroid changes were 0.16 (±0.13) cm, 0.22 (±0.15) cm, and 1.37 (±0.81) cm in RL, AP, and SI directions, respectively. The means (±standard deviation) of tumor edge changes were 0.21 (±0.18) cm, 0.50 (±0.23) cm, and 0.19 (±0.44) cm in RL, AP, and SI directions, respectively. The means (±standard deviation) of tumor set-up displacement were 0.03 (±0.24) cm, 0.02 (±0.26) cm, and 0.02 (±0.43) cm in RL, AP, and SI directions, respectively. The PTV margin to compensate for lung cancer tumor variations uncertainties were 0.88, 0.98 and 2.68 cm in RL, AP and SI directions, which were maximal among all margin recipes.

Conclusions

4DCT and CBCT imaging are appropriate to account for the tumor intra-fractional centroid, boundary variations and inter-fractional set-up displacement. The PTV margin to compensate for lung cancer tumor variations uncertainties can be obtained. Our results show that a conventional 1.0 cm margin in the SI plane dose not suffice to compensate the geometrical variety of the tumor located in lower lobe and adhered to chest wall and diaphragm.
Literature
1.
go back to reference Lanni Jr TB, Grills IS, Kestin LL, Robertson JM. Stereotactic radiotherapy reduces treatment cost while improving overall survival and local control over standard fractionated radiation therapy for medically inoperable non-small-cell lung cancer. Am J Clin Oncol. 2011;34(5):494–8. doi:10.1097/COC.0b013e3181ec63ae. Epub 2010/09/02.CrossRefPubMed Lanni Jr TB, Grills IS, Kestin LL, Robertson JM. Stereotactic radiotherapy reduces treatment cost while improving overall survival and local control over standard fractionated radiation therapy for medically inoperable non-small-cell lung cancer. Am J Clin Oncol. 2011;34(5):494–8. doi:10.​1097/​COC.​0b013e3181ec63ae​. Epub 2010/09/02.CrossRefPubMed
2.
go back to reference Curran Jr WJ, Paulus R, Langer CJ, Komaki R, Lee JS, Hauser S, et al. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J Natl Cancer Inst. 2011;103(19):1452–60. doi:10.1093/jnci/djr325. PubMed PMID: 21903745, PubMed Central PMCID: PMC3186782, Epub 2011/09/10.CrossRefPubMedPubMedCentral Curran Jr WJ, Paulus R, Langer CJ, Komaki R, Lee JS, Hauser S, et al. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J Natl Cancer Inst. 2011;103(19):1452–60. doi:10.​1093/​jnci/​djr325. PubMed PMID: 21903745, PubMed Central PMCID: PMC3186782, Epub 2011/09/10.CrossRefPubMedPubMedCentral
3.
go back to reference Borst GR, Sonke JJ, Betgen A, Remeijer P, van Herk M, Lebesque JV. Kilo-voltage cone-beam computed tomography setup measurements for lung cancer patients; first clinical results and comparison with electronic portal-imaging device. Int J Radiat Oncol Biol Phys. 2007;68(2):555–61. doi:10.1016/j.ijrobp.2007.01.014. Epub 2007/04/03.CrossRefPubMed Borst GR, Sonke JJ, Betgen A, Remeijer P, van Herk M, Lebesque JV. Kilo-voltage cone-beam computed tomography setup measurements for lung cancer patients; first clinical results and comparison with electronic portal-imaging device. Int J Radiat Oncol Biol Phys. 2007;68(2):555–61. doi:10.​1016/​j.​ijrobp.​2007.​01.​014. Epub 2007/04/03.CrossRefPubMed
4.
go back to reference de Boer HC, van Sornsen de Koste JR, Senan S, Visser AG, Heijmen BJ. Analysis and reduction of 3D systematic and random setup errors during the simulation and treatment of lung cancer patients with CT-based external beam radiotherapy dose planning. Int J Radiat Oncol Biol Phys. 2001;49(3):857–68. Epub 2001/02/15.CrossRefPubMed de Boer HC, van Sornsen de Koste JR, Senan S, Visser AG, Heijmen BJ. Analysis and reduction of 3D systematic and random setup errors during the simulation and treatment of lung cancer patients with CT-based external beam radiotherapy dose planning. Int J Radiat Oncol Biol Phys. 2001;49(3):857–68. Epub 2001/02/15.CrossRefPubMed
6.
go back to reference Chang J, Mageras GS, Yorke E, De Arruda F, Sillanpaa J, Rosenzweig KE, et al. Observation of interfractional variations in lung tumor position using respiratory gated and ungated megavoltage cone-beam computed tomography. Int J Radiat Oncol Biol Phys. 2007;67(5):1548–58. doi:10.1016/j.ijrobp.2006.11.055. PubMed PMID: 17394950, PubMed Central PMCID: PMC2278042, Epub 2007/03/31.CrossRefPubMedPubMedCentral Chang J, Mageras GS, Yorke E, De Arruda F, Sillanpaa J, Rosenzweig KE, et al. Observation of interfractional variations in lung tumor position using respiratory gated and ungated megavoltage cone-beam computed tomography. Int J Radiat Oncol Biol Phys. 2007;67(5):1548–58. doi:10.​1016/​j.​ijrobp.​2006.​11.​055. PubMed PMID: 17394950, PubMed Central PMCID: PMC2278042, Epub 2007/03/31.CrossRefPubMedPubMedCentral
7.
go back to reference Hugo GD, Yan D, Liang J. Population and patient-specific target margins for 4D adaptive radiotherapy to account for intra- and inter-fraction variation in lung tumour position. Phys Med Biol. 2007;52(1):257–74. doi:10.1088/0031-9155/52/1/017. Epub 2006/12/22.CrossRefPubMed Hugo GD, Yan D, Liang J. Population and patient-specific target margins for 4D adaptive radiotherapy to account for intra- and inter-fraction variation in lung tumour position. Phys Med Biol. 2007;52(1):257–74. doi:10.​1088/​0031-9155/​52/​1/​017. Epub 2006/12/22.CrossRefPubMed
9.
go back to reference Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53(4):822–34. Epub 2002/07/04.CrossRefPubMed Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53(4):822–34. Epub 2002/07/04.CrossRefPubMed
10.
go back to reference Britton KR, Starkschall G, Tucker SL, Pan T, Nelson C, Chang JY, et al. Assessment of gross tumor volume regression and motion changes during radiotherapy for non-small-cell lung cancer as measured by four-dimensional computed tomography. Int J Radiat Oncol Biol Phys. 2007;68(4):1036–46. doi:10.1016/j.ijrobp.2007.01.021. Epub 2007/03/24.CrossRefPubMed Britton KR, Starkschall G, Tucker SL, Pan T, Nelson C, Chang JY, et al. Assessment of gross tumor volume regression and motion changes during radiotherapy for non-small-cell lung cancer as measured by four-dimensional computed tomography. Int J Radiat Oncol Biol Phys. 2007;68(4):1036–46. doi:10.​1016/​j.​ijrobp.​2007.​01.​021. Epub 2007/03/24.CrossRefPubMed
11.
go back to reference Donnelly ED, Parikh PJ, Lu W, Zhao T, Lechleiter K, Nystrom M, et al. Assessment of intrafraction mediastinal and hilar lymph node movement and comparison to lung tumor motion using four-dimensional CT. Int J Radiat Oncol Biol Phys. 2007;69(2):580–8.CrossRefPubMedPubMedCentral Donnelly ED, Parikh PJ, Lu W, Zhao T, Lechleiter K, Nystrom M, et al. Assessment of intrafraction mediastinal and hilar lymph node movement and comparison to lung tumor motion using four-dimensional CT. Int J Radiat Oncol Biol Phys. 2007;69(2):580–8.CrossRefPubMedPubMedCentral
12.
go back to reference Gauthier JF, Varfalvy N, Tremblay D, Cyr MF, Archambault L. Characterization of lung tumors motion baseline using cone-beam computed tomography. Med Phys. 2012;39(11):7062–70. doi:10.1118/1.4762563. Epub 2012/11/07.CrossRefPubMed Gauthier JF, Varfalvy N, Tremblay D, Cyr MF, Archambault L. Characterization of lung tumors motion baseline using cone-beam computed tomography. Med Phys. 2012;39(11):7062–70. doi:10.​1118/​1.​4762563. Epub 2012/11/07.CrossRefPubMed
13.
14.
go back to reference Hof H, Rhein B, Haering P, Kopp-Schneider A, Debus J, Herfarth K. 4D-CT-based target volume definition in stereotactic radiotherapy of lung tumours: comparison with a conventional technique using individual margins. Radiother Oncol. 2009;93(3):419–23. doi:10.1016/j.radonc.2009.08.040. Epub 2009/09/29.CrossRefPubMed Hof H, Rhein B, Haering P, Kopp-Schneider A, Debus J, Herfarth K. 4D-CT-based target volume definition in stereotactic radiotherapy of lung tumours: comparison with a conventional technique using individual margins. Radiother Oncol. 2009;93(3):419–23. doi:10.​1016/​j.​radonc.​2009.​08.​040. Epub 2009/09/29.CrossRefPubMed
15.
go back to reference Bradley JD, Nofal AN, El Naqa IM, Lu W, Liu J, Hubenschmidt J, et al. Comparison of helical, maximum intensity projection (MIP), and averaged intensity (AI) 4D CT imaging for stereotactic body radiation therapy (SBRT) planning in lung cancer. Radiother Oncol. 2006;81(3):264–8. doi:10.1016/j.radonc.2006.10.009. Epub 2006/11/23.CrossRefPubMed Bradley JD, Nofal AN, El Naqa IM, Lu W, Liu J, Hubenschmidt J, et al. Comparison of helical, maximum intensity projection (MIP), and averaged intensity (AI) 4D CT imaging for stereotactic body radiation therapy (SBRT) planning in lung cancer. Radiother Oncol. 2006;81(3):264–8. doi:10.​1016/​j.​radonc.​2006.​10.​009. Epub 2006/11/23.CrossRefPubMed
16.
go back to reference Ueda Y, Miyazaki M, Nishiyama K, Suzuki O, Tsujii K, Miyagi K. Craniocaudal safety margin calculation based on interfractional changes in tumor motion in lung SBRT assessed with an EPID in cine mode. Int J Radiat Oncol Biol Phys. 2012;83(3):1064–9. doi:10.1016/j.ijrobp.2011.07.043. Epub 2012/01/17.CrossRefPubMed Ueda Y, Miyazaki M, Nishiyama K, Suzuki O, Tsujii K, Miyagi K. Craniocaudal safety margin calculation based on interfractional changes in tumor motion in lung SBRT assessed with an EPID in cine mode. Int J Radiat Oncol Biol Phys. 2012;83(3):1064–9. doi:10.​1016/​j.​ijrobp.​2011.​07.​043. Epub 2012/01/17.CrossRefPubMed
17.
go back to reference Bissonnette JP, Franks KN, Purdie TG, Moseley DJ, Sonke JJ, Jaffray DA, et al. Quantifying interfraction and intrafraction tumor motion in lung stereotactic body radiotherapy using respiration-correlated cone beam computed tomography. Int J Radiat Oncol Biol Phys. 2009;75(3):688–95. doi:10.1016/j.ijrobp.2008.11.066. Epub 2009/04/28.CrossRefPubMed Bissonnette JP, Franks KN, Purdie TG, Moseley DJ, Sonke JJ, Jaffray DA, et al. Quantifying interfraction and intrafraction tumor motion in lung stereotactic body radiotherapy using respiration-correlated cone beam computed tomography. Int J Radiat Oncol Biol Phys. 2009;75(3):688–95. doi:10.​1016/​j.​ijrobp.​2008.​11.​066. Epub 2009/04/28.CrossRefPubMed
19.
go back to reference Grills IS, Hugo G, Kestin LL, Galerani AP, Chao KK, Wloch J, et al. Image-guided radiotherapy via daily online cone-beam CT substantially reduces margin requirements for stereotactic lung radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(4):1045–56.CrossRefPubMed Grills IS, Hugo G, Kestin LL, Galerani AP, Chao KK, Wloch J, et al. Image-guided radiotherapy via daily online cone-beam CT substantially reduces margin requirements for stereotactic lung radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(4):1045–56.CrossRefPubMed
20.
go back to reference Corradetti MN, Mitra N, Bonner Millar LP, Byun J, Wan F, Apisarnthanarax S, et al. A moving target: image guidance for stereotactic body radiation therapy for early-stage non-small cell lung cancer. Practical Radiation Oncology. 2013;3(4):307–15. doi:10.1016/j.prro.2012.10.005. Epub 2014/03/29.CrossRefPubMed Corradetti MN, Mitra N, Bonner Millar LP, Byun J, Wan F, Apisarnthanarax S, et al. A moving target: image guidance for stereotactic body radiation therapy for early-stage non-small cell lung cancer. Practical Radiation Oncology. 2013;3(4):307–15. doi:10.​1016/​j.​prro.​2012.​10.​005. Epub 2014/03/29.CrossRefPubMed
22.
23.
go back to reference Wang L, Feigenberg S, Fan J, Jin L, Turaka A, Chen L, et al. Target repositional accuracy and PTV margin verification using three-dimensional cone-beam computed tomography (CBCT) in stereotactic body radiotherapy (SBRT) of lung cancers. J Appl Clin Med Phys. 2012;13(2):3708. doi:10.1120/jacmp.v13i2.3708. Epub 2012/03/10.PubMed Wang L, Feigenberg S, Fan J, Jin L, Turaka A, Chen L, et al. Target repositional accuracy and PTV margin verification using three-dimensional cone-beam computed tomography (CBCT) in stereotactic body radiotherapy (SBRT) of lung cancers. J Appl Clin Med Phys. 2012;13(2):3708. doi:10.​1120/​jacmp.​v13i2.​3708. Epub 2012/03/10.PubMed
24.
go back to reference Li W, Purdie TG, Taremi M, Fung S, Brade A, Cho BC, et al. Effect of immobilization and performance status on intrafraction motion for stereotactic lung radiotherapy: analysis of 133 patients. Int J Radiat Oncol Biol Phys. 2011;81(5):1568–75. doi:10.1016/j.ijrobp.2010.09.035. Epub 2010/11/16.CrossRefPubMed Li W, Purdie TG, Taremi M, Fung S, Brade A, Cho BC, et al. Effect of immobilization and performance status on intrafraction motion for stereotactic lung radiotherapy: analysis of 133 patients. Int J Radiat Oncol Biol Phys. 2011;81(5):1568–75. doi:10.​1016/​j.​ijrobp.​2010.​09.​035. Epub 2010/11/16.CrossRefPubMed
25.
go back to reference Rietzel E, Chen GT, Choi NC, Willet CG. Four-dimensional image-based treatment planning: target volume segmentation and dose calculation in the presence of respiratory motion. Int J Radiat Oncol Biol Phys. 2005;61(5):1535–50. doi:10.1016/j.ijrobp.2004.11.037. Epub 2005/04/09.CrossRefPubMed Rietzel E, Chen GT, Choi NC, Willet CG. Four-dimensional image-based treatment planning: target volume segmentation and dose calculation in the presence of respiratory motion. Int J Radiat Oncol Biol Phys. 2005;61(5):1535–50. doi:10.​1016/​j.​ijrobp.​2004.​11.​037. Epub 2005/04/09.CrossRefPubMed
26.
go back to reference Stroom JC, de Boer HC, Huizenga H, Visser AG. Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. Int J Radiat Oncol Biol Phys. 1999;43(4):905–19. Epub 1999/03/31.CrossRefPubMed Stroom JC, de Boer HC, Huizenga H, Visser AG. Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. Int J Radiat Oncol Biol Phys. 1999;43(4):905–19. Epub 1999/03/31.CrossRefPubMed
27.
go back to reference van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47(4):1121–35. Epub 2000/06/23.CrossRefPubMed van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47(4):1121–35. Epub 2000/06/23.CrossRefPubMed
28.
go back to reference Parker BC, Shiu AS, Maor MH, Lang FF, Liu HH, White RA, et al. PTV margin determination in conformal SRT of intracranial lesions. J Appl Clin Med Phys. 2002;3(3):176–89. doi:10.1120/1.1474308. Epub 2002/07/23.CrossRefPubMed Parker BC, Shiu AS, Maor MH, Lang FF, Liu HH, White RA, et al. PTV margin determination in conformal SRT of intracranial lesions. J Appl Clin Med Phys. 2002;3(3):176–89. doi:10.​1120/​1.​1474308. Epub 2002/07/23.CrossRefPubMed
29.
go back to reference Stevens CW, Munden RF, Forster KM, Kelly JF, Liao Z, Starkschall G, et al. Respiratory-driven lung tumor motion is independent of tumor size, tumor location, and pulmonary function. Int J Radiat Oncol Biol Phys. 2001;51(1):62–8.CrossRefPubMed Stevens CW, Munden RF, Forster KM, Kelly JF, Liao Z, Starkschall G, et al. Respiratory-driven lung tumor motion is independent of tumor size, tumor location, and pulmonary function. Int J Radiat Oncol Biol Phys. 2001;51(1):62–8.CrossRefPubMed
30.
31.
go back to reference Worm ES, Hansen AT, Petersen JB, Muren LP, Praestegaard LH, Hoyer M. Inter- and intrafractional localisation errors in cone-beam CT guided stereotactic radiation therapy of tumours in the liver and lung. Acta Oncol. 2010;49(7):1177–83. doi:10.3109/0284186X.2010.498435. Epub 2010/07/02.CrossRefPubMed Worm ES, Hansen AT, Petersen JB, Muren LP, Praestegaard LH, Hoyer M. Inter- and intrafractional localisation errors in cone-beam CT guided stereotactic radiation therapy of tumours in the liver and lung. Acta Oncol. 2010;49(7):1177–83. doi:10.​3109/​0284186X.​2010.​498435. Epub 2010/07/02.CrossRefPubMed
34.
go back to reference Descovich M, McGuinness C, Kannarunimit D, Chen J, Pinnaduwage D, Pouliot J, et al. Comparison between target margins derived from 4DCT scans and real-time tumor motion tracking: insights from lung tumor patients treated with robotic radiosurgery. Med Phys. 2015;42(3):1280–7. doi:10.1118/1.4907956. Epub 2015/03/05.CrossRefPubMed Descovich M, McGuinness C, Kannarunimit D, Chen J, Pinnaduwage D, Pouliot J, et al. Comparison between target margins derived from 4DCT scans and real-time tumor motion tracking: insights from lung tumor patients treated with robotic radiosurgery. Med Phys. 2015;42(3):1280–7. doi:10.​1118/​1.​4907956. Epub 2015/03/05.CrossRefPubMed
35.
go back to reference Dobashi S, Sugane T, Mori S, Asakura H, Yamamoto N, Kumagai M, et al. Intrafractional respiratory motion for charged particle lung therapy with immobilization assessed by four-dimensional computed tomography. J Radiat Res. 2011;52(1):96–102. Epub 2011/02/05.CrossRefPubMed Dobashi S, Sugane T, Mori S, Asakura H, Yamamoto N, Kumagai M, et al. Intrafractional respiratory motion for charged particle lung therapy with immobilization assessed by four-dimensional computed tomography. J Radiat Res. 2011;52(1):96–102. Epub 2011/02/05.CrossRefPubMed
36.
go back to reference Timmerman R, Papiez L, McGarry R, Likes L, DesRosiers C, Frost S, et al. Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest. 2003;124(5):1946–55. Epub 2003/11/08.CrossRefPubMed Timmerman R, Papiez L, McGarry R, Likes L, DesRosiers C, Frost S, et al. Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest. 2003;124(5):1946–55. Epub 2003/11/08.CrossRefPubMed
37.
go back to reference Lax I, Blomgren H, Naslund I, Svanstrom R. Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol. 1994;33(6):677–83. Epub 1994/01/01.CrossRefPubMed Lax I, Blomgren H, Naslund I, Svanstrom R. Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol. 1994;33(6):677–83. Epub 1994/01/01.CrossRefPubMed
Metadata
Title
4DCT and CBCT based PTV margin in Stereotactic Body Radiotherapy(SBRT) of non-small cell lung tumor adhered to chest wall or diaphragm
Authors
Yi Li
Jing-lu Ma
Xin Chen
Feng-wen Tang
Xiao-zhi Zhang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2016
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-016-0724-5

Other articles of this Issue 1/2016

Radiation Oncology 1/2016 Go to the issue