Skip to main content
Top
Published in: Inflammation 2/2017

01-04-2017 | ORIGINAL ARTICLE

3’UTR AU-Rich Elements (AREs) and the RNA-Binding Protein Tristetraprolin (TTP) Are Not Required for the LPS-Mediated Destabilization of Phospholipase-Cβ-2 mRNA in Murine Macrophages

Authors: Smita Shukla, Genie Elson, Perry J. Blackshear, Carol S. Lutz, S. Joseph Leibovich

Published in: Inflammation | Issue 2/2017

Login to get access

ABSTRACT

We have shown previously that bacterial lipopolysaccharide (LPS)-mediated suppression of phospholipase-Cβ-2 (PLCβ-2) expression is involved in M1 (inflammatory) to M2-like (wound healing) phenotypic switching of macrophages triggered by adenosine. This suppression is mediated post-transcriptionally by destabilization of PLCβ-2 mRNA (messenger ribonucleic acid). To investigate the mechanism of this LPS-mediated destabilization, we examined the roles of RNA-binding agents including microRNAs and RNA-binding proteins that are involved in regulating stability of mRNAs encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenylate and uridylate (AU)-rich elements (AREs) in 3’UTRs are specific recognition sites for RNA-binding proteins including tristetraprolin (TTP), HuR, and AUF1 and for microRNAs that are involved in regulating mRNA stability. In this study, we investigated the role of TTP and AREs in regulating PLCβ-2 mRNA stability. The 3’UTR of the PLCβ-2 gene was inserted into the pLightswitch luciferase reporter plasmid and transfected into RAW264.7 cells. LPS suppressed luciferase expression from this reporter. Luciferase expression from mutant 3’UTR constructs lacking AREs was similarly downregulated, suggesting that these regions are not required for LPS-mediated suppression of PLCβ-2. TTP was rapidly upregulated in both primary murine macrophages and RAW264.7 cells in response to LPS. Suppression of PLCβ-2 by LPS was examined using macrophages from mice lacking TTP (TTP−/−). LPS suppressed PLCβ-2 expression to the same extent in wild type (WT) and TTP−/− macrophages. Also, the rate of decay of PLCβ-2 mRNA in LPS-treated macrophages following transcriptional blockade was similar in WT and TTP−/− macrophages, clearly indicating that TTP is not involved in LPS-mediated destabilization of PLCβ-2 mRNA in macrophages.
Literature
1.
go back to reference Grinberg, S., G. Hasko, D. Wu, and S.J. Leibovich. 2009. Suppression of PLCbeta2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype. The American Journal of Pathology 175: 2439–53.CrossRefPubMedPubMedCentral Grinberg, S., G. Hasko, D. Wu, and S.J. Leibovich. 2009. Suppression of PLCbeta2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype. The American Journal of Pathology 175: 2439–53.CrossRefPubMedPubMedCentral
2.
go back to reference Goerdt, S., O. Politz, K. Schledzewski, R. Birk, A. Gratchev, P. Guillot, N. Hakiy, C.D. Klemke, E. Dippel, V. Kodelja, and C.E. Orfanos. 1999. Alternative versus classical activation of macrophages. Pathobiology 67: 222–6.CrossRefPubMed Goerdt, S., O. Politz, K. Schledzewski, R. Birk, A. Gratchev, P. Guillot, N. Hakiy, C.D. Klemke, E. Dippel, V. Kodelja, and C.E. Orfanos. 1999. Alternative versus classical activation of macrophages. Pathobiology 67: 222–6.CrossRefPubMed
3.
4.
go back to reference Mantovani, A., B. Bottazzi, S. Sozzani, G. Peri, P. Allavena, Q.G. Dong, A. Vecchi, and F. Colotta. 1993. Cytokine regulation of tumour-associated macrophages. Research in Immunology 144: 280–3.CrossRefPubMed Mantovani, A., B. Bottazzi, S. Sozzani, G. Peri, P. Allavena, Q.G. Dong, A. Vecchi, and F. Colotta. 1993. Cytokine regulation of tumour-associated macrophages. Research in Immunology 144: 280–3.CrossRefPubMed
5.
go back to reference Mantovani, A., S. Sozzani, M. Locati, P. Allavena, and A. Sica. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology 23: 549–55.CrossRefPubMed Mantovani, A., S. Sozzani, M. Locati, P. Allavena, and A. Sica. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology 23: 549–55.CrossRefPubMed
7.
go back to reference Tietzel, I., and D.M. Mosser. 2002. The modulation of macrophage activation by tyrosine phosphorylation. Frontiers in Bioscience 7: d1494–502.CrossRefPubMed Tietzel, I., and D.M. Mosser. 2002. The modulation of macrophage activation by tyrosine phosphorylation. Frontiers in Bioscience 7: d1494–502.CrossRefPubMed
9.
go back to reference Cros, J., N. Cagnard, K. Woollard, N. Patey, S.Y. Zhang, B. Senechal, A. Puel, S.K. Biswas, D. Moshous, C. Picard, J.P. Jais, D. D’Cruz, J.L. Casanova, C. Trouillet, and F. Geissmann. 2010. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33: 375–86.CrossRefPubMedPubMedCentral Cros, J., N. Cagnard, K. Woollard, N. Patey, S.Y. Zhang, B. Senechal, A. Puel, S.K. Biswas, D. Moshous, C. Picard, J.P. Jais, D. D’Cruz, J.L. Casanova, C. Trouillet, and F. Geissmann. 2010. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33: 375–86.CrossRefPubMedPubMedCentral
10.
go back to reference Geissmann, F., S. Jung, and D.R. Littman. 2003. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19: 71–82.CrossRefPubMed Geissmann, F., S. Jung, and D.R. Littman. 2003. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19: 71–82.CrossRefPubMed
11.
go back to reference Leibovich, S.J., J.F. Chen, G. Pinhal-Enfield, P.C. Belem, G. Elson, A. Rosania, M. Ramanathan, C. Montesinos, M. Jacobson, M.A. Schwarzschild, J.S. Fink, and B. Cronstein. 2002. Synergistic up-regulation of vascular endothelial growth factor expression in murine macrophages by adenosine A(2A) receptor agonists and endotoxin. The American Journal of Pathology 160: 2231–44.CrossRefPubMedPubMedCentral Leibovich, S.J., J.F. Chen, G. Pinhal-Enfield, P.C. Belem, G. Elson, A. Rosania, M. Ramanathan, C. Montesinos, M. Jacobson, M.A. Schwarzschild, J.S. Fink, and B. Cronstein. 2002. Synergistic up-regulation of vascular endothelial growth factor expression in murine macrophages by adenosine A(2A) receptor agonists and endotoxin. The American Journal of Pathology 160: 2231–44.CrossRefPubMedPubMedCentral
12.
go back to reference Biswas, S.K., A. Sica, and C.E. Lewis. 2008. Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. The Journal of Immunology 180: 2011–7.CrossRefPubMed Biswas, S.K., A. Sica, and C.E. Lewis. 2008. Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. The Journal of Immunology 180: 2011–7.CrossRefPubMed
13.
go back to reference Varin, A., S. Mukhopadhyay, G. Herbein, and S. Gordon. 2010. Alternative activation of macrophages by IL-4 impairs phagocytosis of pathogens but potentiates microbial-induced signalling and cytokine secretion. Blood 115: 353–62.CrossRefPubMedPubMedCentral Varin, A., S. Mukhopadhyay, G. Herbein, and S. Gordon. 2010. Alternative activation of macrophages by IL-4 impairs phagocytosis of pathogens but potentiates microbial-induced signalling and cytokine secretion. Blood 115: 353–62.CrossRefPubMedPubMedCentral
14.
go back to reference Martinez, F.O., L. Helming, and S. Gordon. 2009. Alternative activation of macrophages: an immunologic functional perspective. Annual Review of Immunology 27: 451–83.CrossRefPubMed Martinez, F.O., L. Helming, and S. Gordon. 2009. Alternative activation of macrophages: an immunologic functional perspective. Annual Review of Immunology 27: 451–83.CrossRefPubMed
15.
go back to reference Pinhal-Enfield, G., M. Ramanathan, G. Hasko, S.N. Vogel, A.L. Salzman, G.J. Boons, and S.J. Leibovich. 2003. An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7 and 9 and adenosine A2A receptors. The American Journal of Pathology 163: 711–21.CrossRefPubMedPubMedCentral Pinhal-Enfield, G., M. Ramanathan, G. Hasko, S.N. Vogel, A.L. Salzman, G.J. Boons, and S.J. Leibovich. 2003. An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7 and 9 and adenosine A2A receptors. The American Journal of Pathology 163: 711–21.CrossRefPubMedPubMedCentral
16.
go back to reference Csoka, B., Z.H. Nemeth, L. Virag, P. Gergely, S.J. Leibovich, P. Pacher, C.X. Sun, M.R. Blackburn, E.S. Vizi, E.A. Deitch, and G. Hasko. 2007. A2A adenosine receptors and C/EBPbeta are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood 110: 2685–95.CrossRefPubMedPubMedCentral Csoka, B., Z.H. Nemeth, L. Virag, P. Gergely, S.J. Leibovich, P. Pacher, C.X. Sun, M.R. Blackburn, E.S. Vizi, E.A. Deitch, and G. Hasko. 2007. A2A adenosine receptors and C/EBPbeta are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood 110: 2685–95.CrossRefPubMedPubMedCentral
17.
go back to reference Csoka, B., Z. Selmeczy, B. Koscso, Z.H. Nemeth, P. Pacher, P.J. Murray, D. Kepka-Lenhart, S.M. Morris Jr., W.C. Gause, S.J. Leibovich, and G. Hasko. 2012. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. The FASEB Journal 26: 376–86.CrossRefPubMedPubMedCentral Csoka, B., Z. Selmeczy, B. Koscso, Z.H. Nemeth, P. Pacher, P.J. Murray, D. Kepka-Lenhart, S.M. Morris Jr., W.C. Gause, S.J. Leibovich, and G. Hasko. 2012. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. The FASEB Journal 26: 376–86.CrossRefPubMedPubMedCentral
18.
go back to reference Elson, G., M. Eisenberg, C. Garg, S. Outram, C.J. Ferrante, G. Hasko, and S.J. Leibovich. 2013. Induction of murine adenosine A(2A) receptor expression by LPS: analysis of the 5′ upstream promoter. Genes and Immunity 14: 147–153.CrossRefPubMed Elson, G., M. Eisenberg, C. Garg, S. Outram, C.J. Ferrante, G. Hasko, and S.J. Leibovich. 2013. Induction of murine adenosine A(2A) receptor expression by LPS: analysis of the 5′ upstream promoter. Genes and Immunity 14: 147–153.CrossRefPubMed
20.
go back to reference Ferrante, C.J., G. Pinhal-Enfield, G. Elson, B.N. Cronstein, G. Hasko, S. Outram, and S.J. Leibovich. 2013. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation 36: 921–31.CrossRefPubMedPubMedCentral Ferrante, C.J., G. Pinhal-Enfield, G. Elson, B.N. Cronstein, G. Hasko, S. Outram, and S.J. Leibovich. 2013. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation 36: 921–31.CrossRefPubMedPubMedCentral
21.
go back to reference Lai, W.S., D.J. Stumpo, and P.J. Blackshear. 1990. Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein. The Journal of Biological Chemistry 265: 16556–63.PubMed Lai, W.S., D.J. Stumpo, and P.J. Blackshear. 1990. Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein. The Journal of Biological Chemistry 265: 16556–63.PubMed
22.
go back to reference Lai, W.S., E. Carballo, J.R. Strum, E.A. Kennington, R.S. Phillips, and P.J. Blackshear. 1999. Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Molecular and Cellular Biology 19: 4311–23.CrossRefPubMedPubMedCentral Lai, W.S., E. Carballo, J.R. Strum, E.A. Kennington, R.S. Phillips, and P.J. Blackshear. 1999. Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Molecular and Cellular Biology 19: 4311–23.CrossRefPubMedPubMedCentral
23.
go back to reference Lai, W.S., E. Carballo, J.M. Thorn, E.A. Kennington, and P.J. Blackshear. 2000. Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. The Journal of Biological Chemistry 275: 17827–37.CrossRefPubMed Lai, W.S., E. Carballo, J.M. Thorn, E.A. Kennington, and P.J. Blackshear. 2000. Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. The Journal of Biological Chemistry 275: 17827–37.CrossRefPubMed
24.
go back to reference Brooks, S.A., and P.J. Blackshear. 1829. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochimica et Biophysica Acta 2013: 666–79. Brooks, S.A., and P.J. Blackshear. 1829. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochimica et Biophysica Acta 2013: 666–79.
25.
go back to reference Sanduja, S., F.F. Blanco, L.E. Young, V. Kaza, and D.A. Dixon. 2012. The role of tristetraprolin in cancer and inflammation. Frontiers in Bioscience 17: 174–88.CrossRef Sanduja, S., F.F. Blanco, L.E. Young, V. Kaza, and D.A. Dixon. 2012. The role of tristetraprolin in cancer and inflammation. Frontiers in Bioscience 17: 174–88.CrossRef
26.
go back to reference DuBois, R.N., M.W. McLane, K. Ryder, L.F. Lau, and D. Nathans. 1990. A growth factor-inducible nuclear protein with a novel cysteine/histidine repetitive sequence. The Journal of Biological Chemistry 265: 19185–91.PubMed DuBois, R.N., M.W. McLane, K. Ryder, L.F. Lau, and D. Nathans. 1990. A growth factor-inducible nuclear protein with a novel cysteine/histidine repetitive sequence. The Journal of Biological Chemistry 265: 19185–91.PubMed
27.
go back to reference Ma, Q., and H.R. Herschman. 1991. A corrected sequence for the predicted protein from the mitogen-inducible TIS11 primary response gene. Oncogene 6: 1277–8.PubMed Ma, Q., and H.R. Herschman. 1991. A corrected sequence for the predicted protein from the mitogen-inducible TIS11 primary response gene. Oncogene 6: 1277–8.PubMed
28.
go back to reference Varnum, B.C., R.W. Lim, V.P. Sukhatme, and H.R. Herschman. 1989. Nucleotide sequence of a cDNA encoding TIS11, a message induced in Swiss 3T3 cells by the tumor promoter tetradecanoyl phorbol acetate. Oncogene 4: 119–20.PubMed Varnum, B.C., R.W. Lim, V.P. Sukhatme, and H.R. Herschman. 1989. Nucleotide sequence of a cDNA encoding TIS11, a message induced in Swiss 3T3 cells by the tumor promoter tetradecanoyl phorbol acetate. Oncogene 4: 119–20.PubMed
29.
go back to reference Taylor, G.A., E. Carballo, D.M. Lee, W.S. Lai, M.J. Thompson, D.D. Patel, D.I. Schenkman, G.S. Gilkeson, H.E. Broxmeyer, B.F. Haynes, and P.J. Blackshear. 1996. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4: 445–54.CrossRefPubMed Taylor, G.A., E. Carballo, D.M. Lee, W.S. Lai, M.J. Thompson, D.D. Patel, D.I. Schenkman, G.S. Gilkeson, H.E. Broxmeyer, B.F. Haynes, and P.J. Blackshear. 1996. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4: 445–54.CrossRefPubMed
30.
go back to reference Tchen, C.R., M. Brook, J. Saklatvala, and A.R. Clark. 2004. The stability of tristetraprolin mRNA is regulated by mitogen-activated protein kinase p38 and by tristetraprolin itself. The Journal of Biological Chemistry 279: 32393–400.CrossRefPubMed Tchen, C.R., M. Brook, J. Saklatvala, and A.R. Clark. 2004. The stability of tristetraprolin mRNA is regulated by mitogen-activated protein kinase p38 and by tristetraprolin itself. The Journal of Biological Chemistry 279: 32393–400.CrossRefPubMed
31.
go back to reference Chen, Y.L., Y.W. Jiang, Y.L. Su, S.C. Lee, M.S. Chang, and C.J. Chang. 2013. Transcriptional regulation of tristetraprolin by NF-kappaB signaling in LPS-stimulated macrophages. Molecular Biology Reports 40: 2867–77.CrossRefPubMed Chen, Y.L., Y.W. Jiang, Y.L. Su, S.C. Lee, M.S. Chang, and C.J. Chang. 2013. Transcriptional regulation of tristetraprolin by NF-kappaB signaling in LPS-stimulated macrophages. Molecular Biology Reports 40: 2867–77.CrossRefPubMed
32.
go back to reference Cao, H., J.S. Tuttle, and P.J. Blackshear. 2004. Immunological characterization of tristetraprolin as a low abundance, inducible, stable cytosolic protein. The Journal of Biological Chemistry 279: 21489–99.CrossRefPubMedPubMedCentral Cao, H., J.S. Tuttle, and P.J. Blackshear. 2004. Immunological characterization of tristetraprolin as a low abundance, inducible, stable cytosolic protein. The Journal of Biological Chemistry 279: 21489–99.CrossRefPubMedPubMedCentral
34.
go back to reference Perez-Ortin, J.E., P. Alepuz, S. Chavez, and M. Choder. 2013. Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression. Journal of Molecular Biology 425: 3750–75.CrossRefPubMed Perez-Ortin, J.E., P. Alepuz, S. Chavez, and M. Choder. 2013. Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression. Journal of Molecular Biology 425: 3750–75.CrossRefPubMed
36.
go back to reference Shen, Z.J., and J.S. Malter. 2015. Regulation of AU-Rich Element RNA Binding Proteins by Phosphorylation and the Prolyl Isomerase Pin1. Biomolecules 5: 412–34.CrossRefPubMedPubMedCentral Shen, Z.J., and J.S. Malter. 2015. Regulation of AU-Rich Element RNA Binding Proteins by Phosphorylation and the Prolyl Isomerase Pin1. Biomolecules 5: 412–34.CrossRefPubMedPubMedCentral
37.
go back to reference Houseley, J., J. LaCava, and D. Tollervey. 2006. RNA-quality control by the exosome. Nature Reviews. Molecular Cell Biology 7: 529–39.CrossRefPubMed Houseley, J., J. LaCava, and D. Tollervey. 2006. RNA-quality control by the exosome. Nature Reviews. Molecular Cell Biology 7: 529–39.CrossRefPubMed
38.
go back to reference Liu, H., N.D. Rodgers, X. Jiao, and M. Kiledjian. 2002. The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. The EMBO Journal 21: 4699–708.CrossRefPubMedPubMedCentral Liu, H., N.D. Rodgers, X. Jiao, and M. Kiledjian. 2002. The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. The EMBO Journal 21: 4699–708.CrossRefPubMedPubMedCentral
39.
go back to reference Moser, M.J., W.R. Holley, A. Chatterjee, and I.S. Mian. 1997. The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains. Nucleic Acids Research 25: 5110–8.CrossRefPubMedPubMedCentral Moser, M.J., W.R. Holley, A. Chatterjee, and I.S. Mian. 1997. The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains. Nucleic Acids Research 25: 5110–8.CrossRefPubMedPubMedCentral
40.
go back to reference Fenger-Gron, M., C. Fillman, B. Norrild, and J. Lykke-Andersen. 2005. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Molecular Cell 20: 905–15.CrossRefPubMed Fenger-Gron, M., C. Fillman, B. Norrild, and J. Lykke-Andersen. 2005. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Molecular Cell 20: 905–15.CrossRefPubMed
41.
42.
go back to reference Yu, J.H., W.H. Yang, T. Gulick, K.D. Bloch, and D.B. Bloch. 2005. Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA 11: 1795–802.CrossRefPubMedPubMedCentral Yu, J.H., W.H. Yang, T. Gulick, K.D. Bloch, and D.B. Bloch. 2005. Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA 11: 1795–802.CrossRefPubMedPubMedCentral
43.
go back to reference Badis, G., C. Saveanu, M. Fromont-Racine, and A. Jacquier. 2004. Targeted mRNA degradation by deadenylation-independent decapping. Molecular Cell 15: 5–15.CrossRefPubMed Badis, G., C. Saveanu, M. Fromont-Racine, and A. Jacquier. 2004. Targeted mRNA degradation by deadenylation-independent decapping. Molecular Cell 15: 5–15.CrossRefPubMed
44.
go back to reference Muhlrad, D., and R. Parker. 2005. The yeast EDC1 mRNA undergoes deadenylation-independent decapping stimulated by Not2p, Not4p, and Not5p. The EMBO Journal 24: 1033–45.CrossRefPubMedPubMedCentral Muhlrad, D., and R. Parker. 2005. The yeast EDC1 mRNA undergoes deadenylation-independent decapping stimulated by Not2p, Not4p, and Not5p. The EMBO Journal 24: 1033–45.CrossRefPubMedPubMedCentral
45.
go back to reference Gatfield, D., and E. Izaurralde. 2004. Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature 429: 575–8.CrossRefPubMed Gatfield, D., and E. Izaurralde. 2004. Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature 429: 575–8.CrossRefPubMed
46.
go back to reference Stevens, A., Y. Wang, K. Bremer, J. Zhang, R. Hoepfner, M. Antoniou, D.R. Schoenberg, and L.E. Maquat. 2002. Beta -Globin mRNA decay in erythroid cells: UG site-preferred endonucleolytic cleavage that is augmented by a premature termination codon. Proceedings of the National Academy of Sciences of the United States of America 99: 12741–6.CrossRefPubMedPubMedCentral Stevens, A., Y. Wang, K. Bremer, J. Zhang, R. Hoepfner, M. Antoniou, D.R. Schoenberg, and L.E. Maquat. 2002. Beta -Globin mRNA decay in erythroid cells: UG site-preferred endonucleolytic cleavage that is augmented by a premature termination codon. Proceedings of the National Academy of Sciences of the United States of America 99: 12741–6.CrossRefPubMedPubMedCentral
47.
go back to reference Stoecklin, G., M. Lu, B. Rattenbacher, and C. Moroni. 2003. A constitutive decay element promotes tumor necrosis factor alpha mRNA degradation via an AU-rich element-independent pathway. Molecular and Cellular Biology 23: 3506–15.CrossRefPubMedPubMedCentral Stoecklin, G., M. Lu, B. Rattenbacher, and C. Moroni. 2003. A constitutive decay element promotes tumor necrosis factor alpha mRNA degradation via an AU-rich element-independent pathway. Molecular and Cellular Biology 23: 3506–15.CrossRefPubMedPubMedCentral
49.
go back to reference Pierrat, B., F. Lacroute, and R. Losson. 1993. The 5′ untranslated region of the PPR1 regulatory gene dictates rapid mRNA decay in yeast. Gene 131: 43–51.CrossRefPubMed Pierrat, B., F. Lacroute, and R. Losson. 1993. The 5′ untranslated region of the PPR1 regulatory gene dictates rapid mRNA decay in yeast. Gene 131: 43–51.CrossRefPubMed
50.
go back to reference Herrick, D., and A. Jacobson. 1992. A coding region segment is necessary, but not sufficient for rapid decay of the HIS3 mRNA in yeast. Gene 114: 35–41.CrossRefPubMed Herrick, D., and A. Jacobson. 1992. A coding region segment is necessary, but not sufficient for rapid decay of the HIS3 mRNA in yeast. Gene 114: 35–41.CrossRefPubMed
51.
go back to reference Khabar, K.S. 2005. The AU-rich transcriptome: more than interferons and cytokines, and its role in disease. Journal of Interferon and Cytokine Research 25: 1–10.CrossRefPubMed Khabar, K.S. 2005. The AU-rich transcriptome: more than interferons and cytokines, and its role in disease. Journal of Interferon and Cytokine Research 25: 1–10.CrossRefPubMed
52.
go back to reference Carballo, E., W.S. Lai, and P.J. Blackshear. 1998. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281: 1001–5.CrossRefPubMed Carballo, E., W.S. Lai, and P.J. Blackshear. 1998. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281: 1001–5.CrossRefPubMed
53.
go back to reference Carballo, E., W.S. Lai, and P.J. Blackshear. 2000. Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95: 1891–9.PubMed Carballo, E., W.S. Lai, and P.J. Blackshear. 2000. Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95: 1891–9.PubMed
54.
go back to reference Douni, E., K. Akassoglou, L. Alexopoulou, S. Georgopoulos, S. Haralambous, S. Hill, G. Kassiotis, D. Kontoyiannis, M. Pasparakis, D. Plows, L. Probert, and G. Kollias. 1995. Transgenic and knockout analyses of the role of TNF in immune regulation and disease pathogenesis. Journal of Inflammation 47: 27–38.PubMed Douni, E., K. Akassoglou, L. Alexopoulou, S. Georgopoulos, S. Haralambous, S. Hill, G. Kassiotis, D. Kontoyiannis, M. Pasparakis, D. Plows, L. Probert, and G. Kollias. 1995. Transgenic and knockout analyses of the role of TNF in immune regulation and disease pathogenesis. Journal of Inflammation 47: 27–38.PubMed
55.
go back to reference Keffer, J., L. Probert, H. Cazlaris, S. Georgopoulos, E. Kaslaris, D. Kioussis, and G. Kollias. 1991. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. The EMBO Journal 10: 4025–31.PubMedPubMedCentral Keffer, J., L. Probert, H. Cazlaris, S. Georgopoulos, E. Kaslaris, D. Kioussis, and G. Kollias. 1991. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. The EMBO Journal 10: 4025–31.PubMedPubMedCentral
56.
go back to reference Phillips, K., N. Kedersha, L. Shen, P.J. Blackshear, and P. Anderson. 2004. Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor alpha, cyclooxygenase 2, and inflammatory arthritis. Proceedings of the National Academy of Sciences of the United States of America 101: 2011–6.CrossRefPubMedPubMedCentral Phillips, K., N. Kedersha, L. Shen, P.J. Blackshear, and P. Anderson. 2004. Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor alpha, cyclooxygenase 2, and inflammatory arthritis. Proceedings of the National Academy of Sciences of the United States of America 101: 2011–6.CrossRefPubMedPubMedCentral
57.
go back to reference Suswam, E., Y. Li, X. Zhang, G.Y. Gillespie, X. Li, J.J. Shacka, L. Lu, L. Zheng, and P.H. King. 2008. Tristetraprolin down-regulates interleukin-8 and vascular endothelial growth factor in malignant glioma cells. Cancer Research 68: 674–82.CrossRefPubMed Suswam, E., Y. Li, X. Zhang, G.Y. Gillespie, X. Li, J.J. Shacka, L. Lu, L. Zheng, and P.H. King. 2008. Tristetraprolin down-regulates interleukin-8 and vascular endothelial growth factor in malignant glioma cells. Cancer Research 68: 674–82.CrossRefPubMed
58.
go back to reference Brennan, S.E., Y. Kuwano, N. Alkharouf, P.J. Blackshear, M. Gorospe, and G.M. Wilson. 2009. The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Research 69: 5168–76.CrossRefPubMedPubMedCentral Brennan, S.E., Y. Kuwano, N. Alkharouf, P.J. Blackshear, M. Gorospe, and G.M. Wilson. 2009. The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Research 69: 5168–76.CrossRefPubMedPubMedCentral
59.
go back to reference Gebeshuber, C.A., and K. Zatloukal. 2009. Martinez J: miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Reports 10: 400–5.CrossRefPubMedPubMedCentral Gebeshuber, C.A., and K. Zatloukal. 2009. Martinez J: miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Reports 10: 400–5.CrossRefPubMedPubMedCentral
60.
go back to reference Carrick, D.M., and P.J. Blackshear. 2007. Comparative expression of tristetraprolin (TTP) family member transcripts in normal human tissues and cancer cell lines. Archives of Biochemistry and Biophysics 462: 278–85.CrossRefPubMed Carrick, D.M., and P.J. Blackshear. 2007. Comparative expression of tristetraprolin (TTP) family member transcripts in normal human tissues and cancer cell lines. Archives of Biochemistry and Biophysics 462: 278–85.CrossRefPubMed
61.
go back to reference Sanduja, S., V. Kaza, and D.A. Dixon. 2009. The mRNA decay factor tristetraprolin (TTP) induces senescence in human papillomavirus-transformed cervical cancer cells by targeting E6-AP ubiquitin ligase. Aging 1: 803–17.CrossRefPubMedPubMedCentral Sanduja, S., V. Kaza, and D.A. Dixon. 2009. The mRNA decay factor tristetraprolin (TTP) induces senescence in human papillomavirus-transformed cervical cancer cells by targeting E6-AP ubiquitin ligase. Aging 1: 803–17.CrossRefPubMedPubMedCentral
Metadata
Title
3’UTR AU-Rich Elements (AREs) and the RNA-Binding Protein Tristetraprolin (TTP) Are Not Required for the LPS-Mediated Destabilization of Phospholipase-Cβ-2 mRNA in Murine Macrophages
Authors
Smita Shukla
Genie Elson
Perry J. Blackshear
Carol S. Lutz
S. Joseph Leibovich
Publication date
01-04-2017
Publisher
Springer US
Published in
Inflammation / Issue 2/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0511-y

Other articles of this Issue 2/2017

Inflammation 2/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.