Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Study protocol

18F-fluoride positron emission tomography/computed tomography and bone scintigraphy for diagnosis of bone metastases in newly diagnosed, high-risk prostate cancer patients: study protocol for a multicentre, diagnostic test accuracy study

Authors: Randi F. Fonager, Helle D. Zacho, Niels C. Langkilde, Lars J. Petersen

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

For decades, planar bone scintigraphy has been the standard practice for detection of bone metastases in prostate cancer and has been endorsed by recent oncology/urology guidelines. It is a sensitive method with modest specificity. 18F-fluoride positron emission tomography/computed tomography has shown improved sensitivity and specificity over bone scintigraphy, but because of methodological issues such as retrospective design and verification bias, the existing level of evidence with 18F-fluoride positron emission tomography/computed tomography is limited. The primary objective is to compare the diagnostic properties of 18F-fluoride positron emission tomography/computed tomography versus bone scintigraphy on an individual patient basis.

Methods/Design

One hundred forty consecutive, high-risk prostate cancer patients will be recruited from several hospitals in Denmark. Sample size was calculated using Hayen’s method for diagnostic comparative studies. This study will be conducted in accordance with recommendations of standards for reporting diagnostic accuracy studies. Eligibility criteria comprise the following: 1) biopsy-proven prostate cancer, 2) PSA ≥50 ng/ml (equals a prevalence of bone metastasis of ≈ 50 % in the study population on bone scintigraphy), 3) patients must be eligible for androgen deprivation therapy, 4) no current or prior cancer (within the past 5 years), 5) ability to comply with imaging procedures, and 6) patients must not receive any investigational drugs. Planar bone scintigraphy and 18F-fluoride positron emission tomography/computed tomography will be performed within a window of 14 days at baseline. All scans will be repeated after 26 weeks of androgen deprivation therapy, and response of individual lesions will be used for diagnostic classification of the lesions on baseline imaging among responding patients. A response is defined as PSA normalisation or ≥80 % reduction compared with baseline levels, testosterone below castration levels, no skeletal related events, and no clinical signs of progression. Images are read by blinded nuclear medicine physicians. The protocol is currently recruiting.

Discussion

To the best of our knowledge, this is one of the largest prospective studies comparing 18F-fluoride positron emission tomography/computed tomography and bone scintigraphy. It is conducted in full accordance with recommendations for diagnostic accuracy trials. It is intended to provide valid documentation for the use of 18F-fluoride positron emission tomography/computed tomography for examination of bone metastasis in the staging of prostate cancer.
Literature
2.
go back to reference Logothetis CJ, Lin SH. Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer. 2005;5:21–8.CrossRefPubMed Logothetis CJ, Lin SH. Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer. 2005;5:21–8.CrossRefPubMed
3.
go back to reference Nørgaard M, Jensen AO, Jacobsen JB, Cetin K, Fryzek JP, Sørensen HT. Skeletal related events, bone metastasis and survival of prostate cancer: a population based cohort study in Denmark (1999 to 2007). J Urol. 2010;184:162–7.CrossRefPubMed Nørgaard M, Jensen AO, Jacobsen JB, Cetin K, Fryzek JP, Sørensen HT. Skeletal related events, bone metastasis and survival of prostate cancer: a population based cohort study in Denmark (1999 to 2007). J Urol. 2010;184:162–7.CrossRefPubMed
4.
go back to reference Mohler JL. The 2010 NCCN clinical practice guidelines in oncology on prostate cancer. J Natl Compr Canc Netw. 2010;8:145.CrossRefPubMed Mohler JL. The 2010 NCCN clinical practice guidelines in oncology on prostate cancer. J Natl Compr Canc Netw. 2010;8:145.CrossRefPubMed
5.
go back to reference Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol. 2011;59:61–71.CrossRefPubMed Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol. 2011;59:61–71.CrossRefPubMed
6.
go back to reference Graham J, Kirkbride P, Cann K, Hasler E, Prettyjohns M. Prostate cancer: summary of updated NICE guidance. BMJ. 2014;348:f7524.CrossRefPubMed Graham J, Kirkbride P, Cann K, Hasler E, Prettyjohns M. Prostate cancer: summary of updated NICE guidance. BMJ. 2014;348:f7524.CrossRefPubMed
7.
go back to reference Bombardieri E, Aktolun C, Baum RP, Bishof-Delaloye A, Buscombe J, Chatal JF, et al. Bone scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2003;30:BP99–106.PubMed Bombardieri E, Aktolun C, Baum RP, Bishof-Delaloye A, Buscombe J, Chatal JF, et al. Bone scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2003;30:BP99–106.PubMed
8.
go back to reference Zacho HD, Barsi T, Mortensen JC, Mogensen MK, Bertelsen H, Josephsen N, et al. Prospective multicenter study of bone scintigraphy in consecutive patients with newly diagnosed prostate cancer. Clin Nucl Med. 2014;39:26–31.CrossRefPubMed Zacho HD, Barsi T, Mortensen JC, Mogensen MK, Bertelsen H, Josephsen N, et al. Prospective multicenter study of bone scintigraphy in consecutive patients with newly diagnosed prostate cancer. Clin Nucl Med. 2014;39:26–31.CrossRefPubMed
9.
go back to reference Palmedo H, Marx C, Ebert A, Kreft B, Ko Y, Turler A, et al. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging. 2014;41:59–67.CrossRefPubMed Palmedo H, Marx C, Ebert A, Kreft B, Ko Y, Turler A, et al. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging. 2014;41:59–67.CrossRefPubMed
10.
go back to reference Wondergem M, van der Zant FM, van der Ploeg T, Knol RJ. A literature review of 18F-fluoride PET/CT and 18F-choline or 11C-choline PET/CT for detection of bone metastases in patients with prostate cancer. Nucl Med Commun. 2013;34:935–45.CrossRefPubMed Wondergem M, van der Zant FM, van der Ploeg T, Knol RJ. A literature review of 18F-fluoride PET/CT and 18F-choline or 11C-choline PET/CT for detection of bone metastases in patients with prostate cancer. Nucl Med Commun. 2013;34:935–45.CrossRefPubMed
11.
go back to reference Wong KK, Piert M. Dynamic bone imaging with 99mTc-labeled diphosphonates and 18F-NaF: mechanisms and applications. J Nucl Med. 2013;54:590–9.CrossRefPubMed Wong KK, Piert M. Dynamic bone imaging with 99mTc-labeled diphosphonates and 18F-NaF: mechanisms and applications. J Nucl Med. 2013;54:590–9.CrossRefPubMed
12.
go back to reference Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med. 2001;31:28–49.CrossRefPubMed Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med. 2001;31:28–49.CrossRefPubMed
13.
go back to reference Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.PubMed Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.PubMed
14.
go back to reference Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM et al.: Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Fam Pract 2004;21:4–10.CrossRefPubMed Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM et al.: Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Fam Pract 2004;21:4–10.CrossRefPubMed
15.
go back to reference Schünemann HJ, Oxman AD, Brozek J, Glasziou P, Jaeschke R, Vist GE et al.: Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 2008;336:1106–10.CrossRefPubMedPubMedCentral Schünemann HJ, Oxman AD, Brozek J, Glasziou P, Jaeschke R, Vist GE et al.: Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 2008;336:1106–10.CrossRefPubMedPubMedCentral
16.
go back to reference Klotz L, Boccon-Gibod L, Shore ND, Andreou C, Persson BE, Cantor P et al. The efficacy and safety of degarelix: a 12-month, comparative, randomized, open-label, parallel-group phase III study in patients with prostate cancer. BJU Int 2008;102:1531–38.CrossRefPubMed Klotz L, Boccon-Gibod L, Shore ND, Andreou C, Persson BE, Cantor P et al. The efficacy and safety of degarelix: a 12-month, comparative, randomized, open-label, parallel-group phase III study in patients with prostate cancer. BJU Int 2008;102:1531–38.CrossRefPubMed
17.
go back to reference Nishiyama T: Serum testosterone levels after medical or surgical androgen deprivation: a comprehensive review of the literature. Urol Oncol 2014;32:38–28.CrossRefPubMed Nishiyama T: Serum testosterone levels after medical or surgical androgen deprivation: a comprehensive review of the literature. Urol Oncol 2014;32:38–28.CrossRefPubMed
18.
go back to reference Labrie F, Dupont A, Belanger A, Giguere M, Lacoursiere Y, Emond J et al. Combination therapy with flutamide and castration (LHRH agonist or orchiectomy) in advanced prostate cancer: a marked improvement in response and survival. J Steroid Biochem 1985;23:833–41.CrossRefPubMed Labrie F, Dupont A, Belanger A, Giguere M, Lacoursiere Y, Emond J et al. Combination therapy with flutamide and castration (LHRH agonist or orchiectomy) in advanced prostate cancer: a marked improvement in response and survival. J Steroid Biochem 1985;23:833–41.CrossRefPubMed
19.
go back to reference Labrie F, Dupont A, Belanger A, Cusan L, Lacourciere Y, Monfette G et al. New hormonal therapy in prostatic carcinoma: combined treatment with an LHRH agonist and an antiandrogen. Clin Invest Med 1982;5:267–75.PubMed Labrie F, Dupont A, Belanger A, Cusan L, Lacourciere Y, Monfette G et al. New hormonal therapy in prostatic carcinoma: combined treatment with an LHRH agonist and an antiandrogen. Clin Invest Med 1982;5:267–75.PubMed
20.
go back to reference Pollen JJ, Witztum KF, Ashburn WL: The flare phenomenon on radionuclide bone scan in metastatic prostate cancer. AJR Am J Roentgenol. 1984;142:773–76.CrossRefPubMed Pollen JJ, Witztum KF, Ashburn WL: The flare phenomenon on radionuclide bone scan in metastatic prostate cancer. AJR Am J Roentgenol. 1984;142:773–76.CrossRefPubMed
21.
go back to reference Reza M, Bjartell A, Ohlsson M, Kaboteh R, Wollmer P, Edenbrandt L et al. Bone Scan Index as a prognostic imaging biomarker during androgen deprivation therapy. EJNMMI Res. 2014;4:58.CrossRefPubMedPubMedCentral Reza M, Bjartell A, Ohlsson M, Kaboteh R, Wollmer P, Edenbrandt L et al. Bone Scan Index as a prognostic imaging biomarker during androgen deprivation therapy. EJNMMI Res. 2014;4:58.CrossRefPubMedPubMedCentral
22.
go back to reference Johns WD, Garnick MB, Kaplan WD: Leuprolide therapy for prostate cancer: An association with scintigraphic ''flare'' on bone scan. Clin Nucl Med. 1990;15:485–87.CrossRefPubMed Johns WD, Garnick MB, Kaplan WD: Leuprolide therapy for prostate cancer: An association with scintigraphic ''flare'' on bone scan. Clin Nucl Med. 1990;15:485–87.CrossRefPubMed
24.
go back to reference Scher HI: Prostate carcinoma: defining therapeutic objectives and improving overall outcomes. Cancer. 2003;97:758–71.CrossRefPubMed Scher HI: Prostate carcinoma: defining therapeutic objectives and improving overall outcomes. Cancer. 2003;97:758–71.CrossRefPubMed
25.
go back to reference Brown MS, Chu GH, Kim HJ, len-Auerbach M, Poon C, Bridges J et al. Computer-aided quantitative bone scan assessment of prostate cancer treatment response. Nucl Med Commun. 2012;33:384–94.PubMed Brown MS, Chu GH, Kim HJ, len-Auerbach M, Poon C, Bridges J et al. Computer-aided quantitative bone scan assessment of prostate cancer treatment response. Nucl Med Commun. 2012;33:384–94.PubMed
26.
go back to reference Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der KT et al. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2014;65:467–79.CrossRefPubMed Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der KT et al. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2014;65:467–79.CrossRefPubMed
27.
go back to reference Donohoe KJ, Brown ML, Collier BD: Society of nuclear medicine procedure guideline for bone scintigraphy. Bone Scintigraphy. 2003;205:209. Donohoe KJ, Brown ML, Collier BD: Society of nuclear medicine procedure guideline for bone scintigraphy. Bone Scintigraphy. 2003;205:209.
28.
go back to reference Hellwig D, Krause BJ, Schirrmeister H, Freesmeyer M: [Bone scanning with sodium 18F-fluoride PET and PET/CT. German guideline Version 1.0.]. Nuklearmedizin. 2010; 49:195–201.CrossRefPubMed Hellwig D, Krause BJ, Schirrmeister H, Freesmeyer M: [Bone scanning with sodium 18F-fluoride PET and PET/CT. German guideline Version 1.0.]. Nuklearmedizin. 2010; 49:195–201.CrossRefPubMed
29.
go back to reference Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010; 51:1813-1820. Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010; 51:1813-1820.
30.
go back to reference Schuetz GM, Schlattmann P, Dewey M: Use of 3x2 tables with an intention to diagnose approach to assess clinical performance of diagnostic tests: meta-analytical evaluation of coronary CT angiography studies. BMJ. 2012;345:e6717.CrossRefPubMedPubMedCentral Schuetz GM, Schlattmann P, Dewey M: Use of 3x2 tables with an intention to diagnose approach to assess clinical performance of diagnostic tests: meta-analytical evaluation of coronary CT angiography studies. BMJ. 2012;345:e6717.CrossRefPubMedPubMedCentral
31.
go back to reference Hayen A, Macaskill P, Irwig L, Bossuyt P: Appropriate statistical methods are required to assess diagnostic tests for replacement, add-on, and triage. J Clin Epidemiol. 2010;63:883–91.CrossRefPubMed Hayen A, Macaskill P, Irwig L, Bossuyt P: Appropriate statistical methods are required to assess diagnostic tests for replacement, add-on, and triage. J Clin Epidemiol. 2010;63:883–91.CrossRefPubMed
32.
go back to reference Brozek JL, Akl EA, Jaeschke R, Lang DM, Bossuyt P, Glasziou P et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines: Part 2 of 3. The GRADE approach to grading quality of evidence about diagnostic tests and strategies. Allergy. 2009;64:1109–116.CrossRefPubMed Brozek JL, Akl EA, Jaeschke R, Lang DM, Bossuyt P, Glasziou P et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines: Part 2 of 3. The GRADE approach to grading quality of evidence about diagnostic tests and strategies. Allergy. 2009;64:1109–116.CrossRefPubMed
33.
go back to reference Donohoe KJ, Brown ML, Collier BD. Society of nuclear medicine procedure guideline for bone scintigraphy. Bone Scintigraphy. 2003;205:209. Donohoe KJ, Brown ML, Collier BD. Society of nuclear medicine procedure guideline for bone scintigraphy. Bone Scintigraphy. 2003;205:209.
34.
go back to reference Lecouvet FE, Talbot JN, Messiou C, Bourguet P, Liu Y, de Souza NM: Monitoring the response of bone metastases to treatment with Magnetic Resonance Imaging and nuclear medicine techniques: A review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer. 2014. Lecouvet FE, Talbot JN, Messiou C, Bourguet P, Liu Y, de Souza NM: Monitoring the response of bone metastases to treatment with Magnetic Resonance Imaging and nuclear medicine techniques: A review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer. 2014.
35.
go back to reference Poonacha TK, Go RS: Level of scientific evidence underlying recommendations arising from the National Comprehensive Cancer Network clinical practice guidelines. J Clin Oncol. 2011;29:186-91. Poonacha TK, Go RS: Level of scientific evidence underlying recommendations arising from the National Comprehensive Cancer Network clinical practice guidelines. J Clin Oncol. 2011;29:186-91.
36.
go back to reference Iagaru A, Mittra E, Dick DW, Gambhir SS: Prospective evaluation of (99m)Tc MDP scintigraphy, (18)F NaF PET/CT, and (18)F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol. 2012;14:252–59.CrossRefPubMed Iagaru A, Mittra E, Dick DW, Gambhir SS: Prospective evaluation of (99m)Tc MDP scintigraphy, (18)F NaF PET/CT, and (18)F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol. 2012;14:252–59.CrossRefPubMed
37.
go back to reference Damle NA, Bal C, Bandopadhyaya GP, Kumar L, Kumar P, Malhotra A et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol. 2013;31:262–69.CrossRefPubMed Damle NA, Bal C, Bandopadhyaya GP, Kumar L, Kumar P, Malhotra A et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol. 2013;31:262–69.CrossRefPubMed
38.
go back to reference Withofs N, Grayet B, Tancredi T, Rorive A, Mella C, Giacomelli F et al.: (1)(8)F-fluoride PET/CT for assessing bone involvement in prostate and breast cancers. Nucl Med Commun. 2011;32:168-76. Withofs N, Grayet B, Tancredi T, Rorive A, Mella C, Giacomelli F et al.: (1)(8)F-fluoride PET/CT for assessing bone involvement in prostate and breast cancers. Nucl Med Commun. 2011;32:168-76.
39.
go back to reference National Comprehensive Cancer Network. Prostate Cancer (Version 2.2014). 2014. 6. Ref Type: Internet Communication. National Comprehensive Cancer Network. Prostate Cancer (Version 2.2014). 2014. 6. Ref Type: Internet Communication.
Metadata
Title
18F-fluoride positron emission tomography/computed tomography and bone scintigraphy for diagnosis of bone metastases in newly diagnosed, high-risk prostate cancer patients: study protocol for a multicentre, diagnostic test accuracy study
Authors
Randi F. Fonager
Helle D. Zacho
Niels C. Langkilde
Lars J. Petersen
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2047-1

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine