Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 12/2017

01-11-2017 | Original Article

18F–FDG PET diagnostic and prognostic patterns do not overlap in Alzheimer’s disease (AD) patients at the mild cognitive impairment (MCI) stage

Authors: Silvia Morbelli, Matteo Bauckneht, Dario Arnaldi, Agnese Picco, Matteo Pardini, Andrea Brugnolo, Ambra Buschiazzo, Marco Pagani, Nicola Girtler, Alberto Nieri, Andrea Chincarini, Fabrizio De Carli, Gianmario Sambuceti, Flavio Nobili

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 12/2017

Login to get access

Abstract

Purpose

We aimed to identify the cortical regions where hypometabolism can predict the speed of conversion to dementia in mild cognitive impairment due to Alzheimer’s disease (MCI-AD).

Methods

We selected from the clinical database of our tertiary center memory clinic, eighty-two consecutive MCI-AD that underwent 18F–fluorodeoxyglucose (FDG) PET at baseline during the first diagnostic work-up and were followed up at least until their clinical conversion to AD dementia. The whole group of MCI-AD was compared in SPM8 with a group of age-matched healthy controls (CTR) to verify the presence of AD diagnostic-pattern; then the correlation between conversion time and brain metabolism was assessed to identify the prognostic-pattern. Significance threshold was set at p < 0.05 False-Discovery-Rate (FDR) corrected at peak and at cluster level. Each MCI-AD was then compared with CTR by means of a SPM single-subject analysis and grouped according to presence of AD diagnostic-pattern and prognostic-pattern. Kaplan-Meier-analysis was used to evaluate if diagnostic- and/or prognostic-patterns can predict speed of conversion to dementia.

Results

Diagnostic-pattern corresponded to typical posterior hypometabolism (BA 7, 18, 19, 30, 31 and 40) and did not correlate with time to conversion, which was instead correlated with metabolic levels in right middle and inferior temporal gyri as well as in the fusiform gyrus (prognostic-pattern, BA 20, 21 and 38). At Kaplan-Meier analysis, patients with hypometabolism in the prognostic pattern converted to AD-dementia significantly earlier than patients not showing significant hypometabolism in the right middle and inferior temporal cortex (9 versus 19 months; Log rank p < 0.02, Breslow test: p < 0.003, Tarone-Ware test: p < 0.007).

Conclusion

The present findings support the role of FDG PET as a robust progression biomarker even in a naturalist population of MCI-AD. However, not the AD-typical diagnostic-pattern in posterior regions but the middle and inferior temporal metabolism captures speed of conversion to dementia in MCI-AD since baseline. The highlighted prognostic pattern is a further, independent source of heterogeneity in MCI-AD and affects a primary-endpoint on interventional clinical trials (time of conversion to dementia).
Appendix
Available only for authorised users
Literature
1.
go back to reference Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9:119–28.CrossRefPubMedPubMedCentral Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9:119–28.CrossRefPubMedPubMedCentral
2.
go back to reference Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.CrossRefPubMed Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.CrossRefPubMed
3.
go back to reference Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539–47.CrossRefPubMedPubMedCentral Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539–47.CrossRefPubMedPubMedCentral
4.
go back to reference Albert MS, DeKosky ST. Dickson D et al the diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging and Alzheimer's Association workgroup. Alzheimers Dement. 2011;7:270–9.CrossRefPubMedPubMedCentral Albert MS, DeKosky ST. Dickson D et al the diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging and Alzheimer's Association workgroup. Alzheimers Dement. 2011;7:270–9.CrossRefPubMedPubMedCentral
5.
go back to reference Ossenkoppele R, van der Flier WM, Verfaillie SC, Vrenken H, Versteeg A, van Schijndel RA. Long-term effects of amyloid, hypometabolism, and atrophy on neuropsychological functions. Neurology. 2014;82:1768–75.CrossRefPubMed Ossenkoppele R, van der Flier WM, Verfaillie SC, Vrenken H, Versteeg A, van Schijndel RA. Long-term effects of amyloid, hypometabolism, and atrophy on neuropsychological functions. Neurology. 2014;82:1768–75.CrossRefPubMed
6.
go back to reference Chételat G, Desgranges B, De la Sayette V, Viadre F, Eustache F, Baron JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology. 2003;60:1374–7.CrossRefPubMed Chételat G, Desgranges B, De la Sayette V, Viadre F, Eustache F, Baron JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology. 2003;60:1374–7.CrossRefPubMed
7.
go back to reference Anchisi D, Borroni B, Franceschi M, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol. 2005;62:1728–33.CrossRefPubMed Anchisi D, Borroni B, Franceschi M, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol. 2005;62:1728–33.CrossRefPubMed
8.
go back to reference Herholz K, Westwood S, Haense C, Dunn G. Evaluation of a calibrated (18)F-FDG PET score as a biomarker for progression in Alzheimer disease and mild cognitive impairment. J Nucl Med. 2011;52:1218–26.CrossRefPubMed Herholz K, Westwood S, Haense C, Dunn G. Evaluation of a calibrated (18)F-FDG PET score as a biomarker for progression in Alzheimer disease and mild cognitive impairment. J Nucl Med. 2011;52:1218–26.CrossRefPubMed
9.
go back to reference Drzezga A, Grimmer T, Rimenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, et al. Prediction of individual clinical outcome in MCI by means o genetic assessment and (18)F-FDG PET. J Nucl Med. 2005;46:1625–32.PubMed Drzezga A, Grimmer T, Rimenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, et al. Prediction of individual clinical outcome in MCI by means o genetic assessment and (18)F-FDG PET. J Nucl Med. 2005;46:1625–32.PubMed
10.
go back to reference Morbelli S, Garibotto V, Van De Giessen E, et al. A Cochrane review on brain [18F]FDG PET in dementia: limitations and future perspectives. Eur J Nucl Med Mol Imaging. 2015;42:1487–91.CrossRefPubMed Morbelli S, Garibotto V, Van De Giessen E, et al. A Cochrane review on brain [18F]FDG PET in dementia: limitations and future perspectives. Eur J Nucl Med Mol Imaging. 2015;42:1487–91.CrossRefPubMed
11.
go back to reference Pagani M, Dessi B, Morbelli S, et al. MCI patients declining and not-declining at mid-term follow-up: FDG-PET findings. Curr Alzheimer Res. 2010;7:287–94.CrossRefPubMed Pagani M, Dessi B, Morbelli S, et al. MCI patients declining and not-declining at mid-term follow-up: FDG-PET findings. Curr Alzheimer Res. 2010;7:287–94.CrossRefPubMed
12.
go back to reference Doyle OM, Westman E, Marquand AF, et al. Predicting progression of Alzheimer's disease using ordinal regression. PLoS One. 2014;20(9):e105542.CrossRef Doyle OM, Westman E, Marquand AF, et al. Predicting progression of Alzheimer's disease using ordinal regression. PLoS One. 2014;20(9):e105542.CrossRef
13.
go back to reference Pagani M, Giuliani A, Öberg J, De Carli F, Morbelli S, Girtler N, Arnaldi D, Accardo J, Bauckneht M, Bongioanni F, Chincarini A, Sambuceti G, Jonsson C, Nobili F. Progressive disintegration of brain networking from normal aging to Alzheimer Disease: Analysis of Independent Components of (18)F-FDG PET Data. J Nucl Med. 2017;58:1132–1139. Pagani M, Giuliani A, Öberg J, De Carli F, Morbelli S, Girtler N, Arnaldi D, Accardo J, Bauckneht M, Bongioanni F, Chincarini A, Sambuceti G, Jonsson C, Nobili F. Progressive disintegration of brain networking from normal aging to Alzheimer Disease: Analysis of Independent Components of (18)F-FDG PET Data. J Nucl Med. 2017;58:1132–1139.
14.
go back to reference McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:263–9.CrossRefPubMedPubMedCentral McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:263–9.CrossRefPubMedPubMedCentral
15.
16.
go back to reference Pagani M, Giuliani A, Öberg J, et al. Predicting the transition from normal aging to Alzheimer's disease: a statistical mechanistic evaluation of FDG-PET data. NeuroImage. 2016;141:282–90.CrossRefPubMed Pagani M, Giuliani A, Öberg J, et al. Predicting the transition from normal aging to Alzheimer's disease: a statistical mechanistic evaluation of FDG-PET data. NeuroImage. 2016;141:282–90.CrossRefPubMed
17.
go back to reference Varrone A, Asenbaum S, Vander Borght T, et al. EANM procedure guidelines for PET brain imaging using [ 18F]FDG, version 2. EJNMMI. 2009;36:2103–10. Varrone A, Asenbaum S, Vander Borght T, et al. EANM procedure guidelines for PET brain imaging using [ 18F]FDG, version 2. EJNMMI. 2009;36:2103–10.
18.
go back to reference Della Rosa PA, Cerami C, Gallivanone F, et al. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics. 2014;12(4):575–93.CrossRefPubMed Della Rosa PA, Cerami C, Gallivanone F, et al. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics. 2014;12(4):575–93.CrossRefPubMed
19.
go back to reference Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13:5–14.CrossRefPubMed Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13:5–14.CrossRefPubMed
20.
go back to reference Dukart J, Mueller K, Horstmann A, et al. Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. NeuroImage. 2010;49:1490–5.CrossRefPubMed Dukart J, Mueller K, Horstmann A, et al. Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. NeuroImage. 2010;49:1490–5.CrossRefPubMed
21.
go back to reference Oishi N, Udaka F, Kameyama M, Sawamoto N, Hashikawa K, Fukuyama H. Regional cerebral blood flow in Parkinson disease with nonpsychotic visual hallucinations. Neurology. 2005;65:1708–15.CrossRefPubMed Oishi N, Udaka F, Kameyama M, Sawamoto N, Hashikawa K, Fukuyama H. Regional cerebral blood flow in Parkinson disease with nonpsychotic visual hallucinations. Neurology. 2005;65:1708–15.CrossRefPubMed
22.
go back to reference Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Amer Statist Assn. 1958;53:457–81.CrossRef Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Amer Statist Assn. 1958;53:457–81.CrossRef
23.
go back to reference Morbelli S, Drzezga A, Perneczky R, et al. Resting metabolic connectivity in prodromal Alzheimer's disease. A European Alzheimer disease consortium (EADC) project. Neurobiol Aging. 2012;33:2533–50.CrossRefPubMed Morbelli S, Drzezga A, Perneczky R, et al. Resting metabolic connectivity in prodromal Alzheimer's disease. A European Alzheimer disease consortium (EADC) project. Neurobiol Aging. 2012;33:2533–50.CrossRefPubMed
24.
go back to reference Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32:486–510.CrossRefPubMed Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32:486–510.CrossRefPubMed
25.
go back to reference Nobili F, Salmaso D, Morbelli S, et al. Principal component analysis of FDG PET in amnestic MCI. Eur J Nucl Med Mol Imaging. 2008;35:2191–202.CrossRefPubMed Nobili F, Salmaso D, Morbelli S, et al. Principal component analysis of FDG PET in amnestic MCI. Eur J Nucl Med Mol Imaging. 2008;35:2191–202.CrossRefPubMed
26.
go back to reference Morbelli S, Piccardo A, Villavecchia G, Dessi B, Brugnolo A, Piccini A, et al. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study. Eur J Nucl Med Mol Imaging. 2010;37:36–45.CrossRefPubMed Morbelli S, Piccardo A, Villavecchia G, Dessi B, Brugnolo A, Piccini A, et al. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study. Eur J Nucl Med Mol Imaging. 2010;37:36–45.CrossRefPubMed
27.
go back to reference Ossenkoppele R, Schonhaut DR, Schöll M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain. 2016;139:1551–67.CrossRefPubMedPubMedCentral Ossenkoppele R, Schonhaut DR, Schöll M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain. 2016;139:1551–67.CrossRefPubMedPubMedCentral
28.
go back to reference Ishiki A, Okamura N, Furukawa K, et al. Longitudinal assessment of tau pathology in patients with Alzheimer's disease using [18F]THK-5117 positron emission tomography. PLoS One. 2015;10:e0140311.CrossRefPubMedPubMedCentral Ishiki A, Okamura N, Furukawa K, et al. Longitudinal assessment of tau pathology in patients with Alzheimer's disease using [18F]THK-5117 positron emission tomography. PLoS One. 2015;10:e0140311.CrossRefPubMedPubMedCentral
29.
go back to reference Chiotis K, Saint-Aubert L, Savitcheva I, et al. Imaging in-vivo tau pathology in Alzheimer's disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging. 2016;43:1686–9.CrossRefPubMedPubMedCentral Chiotis K, Saint-Aubert L, Savitcheva I, et al. Imaging in-vivo tau pathology in Alzheimer's disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging. 2016;43:1686–9.CrossRefPubMedPubMedCentral
30.
go back to reference Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol. 1997;42:85–94.CrossRefPubMed Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol. 1997;42:85–94.CrossRefPubMed
31.
go back to reference Meguro K, Blaizot X, Kondoh Y, Le Mestric C, Baron JC, Chavoix C. Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer's disease. Brain. 1999;122:1519–31.CrossRefPubMed Meguro K, Blaizot X, Kondoh Y, Le Mestric C, Baron JC, Chavoix C. Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer's disease. Brain. 1999;122:1519–31.CrossRefPubMed
32.
go back to reference Teipel S, Grothe MJ. Alzheimer’s Disease Neuroimaging Initiative. Does posterior cingulate hypometabolism result from disconnection or local pathology across preclinical and clinical stages of Alzheimer's disease? Eur J Nucl Med Mol Imaging. 2016;43:526–36.CrossRefPubMed Teipel S, Grothe MJ. Alzheimer’s Disease Neuroimaging Initiative. Does posterior cingulate hypometabolism result from disconnection or local pathology across preclinical and clinical stages of Alzheimer's disease? Eur J Nucl Med Mol Imaging. 2016;43:526–36.CrossRefPubMed
33.
go back to reference Morbelli S, Arnaldi D, Capitanio S, Picco A, Buschiazzo A. Nobili F. Resting metabolic connectivity in Alzheimer’s disease. Clin Transl Imaging. 2013;1:271–8.CrossRef Morbelli S, Arnaldi D, Capitanio S, Picco A, Buschiazzo A. Nobili F. Resting metabolic connectivity in Alzheimer’s disease. Clin Transl Imaging. 2013;1:271–8.CrossRef
34.
go back to reference Pagani M, De Carli F, Morbelli S, et al. Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer's disease from healthy controls. A European Alzheimer's disease consortium (EADC) study. Neuroimage Clin. 2014;7:34–42.CrossRefPubMedPubMedCentral Pagani M, De Carli F, Morbelli S, et al. Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer's disease from healthy controls. A European Alzheimer's disease consortium (EADC) study. Neuroimage Clin. 2014;7:34–42.CrossRefPubMedPubMedCentral
35.
go back to reference Morbelli S, Brugnolo A, Bossert I, et al. Visual versus semi-quantitative analysis of 18F-FDG-PET in amnestic MCI: an European Alzheimer's disease consortium (EADC) project. J Alzheimers Dis. 2015;44:815–26.PubMed Morbelli S, Brugnolo A, Bossert I, et al. Visual versus semi-quantitative analysis of 18F-FDG-PET in amnestic MCI: an European Alzheimer's disease consortium (EADC) project. J Alzheimers Dis. 2015;44:815–26.PubMed
36.
go back to reference Ossenkoppele R, Tolboom N, Foster-Dingley JC, et al. Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET. Eur J Nucl Med Mol Imaging. 2012;39:990–1000.CrossRefPubMed Ossenkoppele R, Tolboom N, Foster-Dingley JC, et al. Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET. Eur J Nucl Med Mol Imaging. 2012;39:990–1000.CrossRefPubMed
37.
go back to reference Drzezga A, Lautenschlager N, Siebner H, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003;30:1104–13.CrossRefPubMed Drzezga A, Lautenschlager N, Siebner H, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003;30:1104–13.CrossRefPubMed
38.
go back to reference Pagani M, Nobili F, Morbelli S, Arnaldi D, Giuliani A, Öberg J, Girtler N, Brugnolo A, Picco A, Bauckneht M, Piva R, Chincarini A, Sambuceti G, Jonsson C, De Carli F. Early identification of MCI converting to AD: a FDG PET study. Eur J Nucl Med Mol Imaging. 2017. doi: 10.1007/s00259-017-3761-x. Pagani M, Nobili F, Morbelli S, Arnaldi D, Giuliani A, Öberg J, Girtler N, Brugnolo A, Picco A, Bauckneht M, Piva R, Chincarini A, Sambuceti G, Jonsson C, De Carli F. Early identification of MCI converting to AD: a FDG PET study. Eur J Nucl Med Mol Imaging. 2017. doi: 10.​1007/​s00259-017-3761-x.
39.
go back to reference Fouquet M, Desgranges B, Landeau B, et al. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer's disease. Brain. 2009;132:2058–67.CrossRefPubMedPubMedCentral Fouquet M, Desgranges B, Landeau B, et al. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer's disease. Brain. 2009;132:2058–67.CrossRefPubMedPubMedCentral
40.
go back to reference Marshall GA, Rentz DM, Frey MT, Locascio JJ, Johnson KA, Sperling RA. Executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer's disease. Alzheimers Dement. 2011;7:300–8.CrossRefPubMedPubMedCentral Marshall GA, Rentz DM, Frey MT, Locascio JJ, Johnson KA, Sperling RA. Executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer's disease. Alzheimers Dement. 2011;7:300–8.CrossRefPubMedPubMedCentral
41.
go back to reference Roy K, Pepin LC, Philiossaint M, et al. Regional fluorodeoxyglucose metabolism and instrumental activities of daily living across the Alzheimer's disease spectrum. J Alzheimers Dis. 2014;42:291–300.PubMedPubMedCentral Roy K, Pepin LC, Philiossaint M, et al. Regional fluorodeoxyglucose metabolism and instrumental activities of daily living across the Alzheimer's disease spectrum. J Alzheimers Dis. 2014;42:291–300.PubMedPubMedCentral
42.
go back to reference Torosyan N, Mason K, Dahlbom M. Silverman DHS; Alzheimer’sDisease neuroimaging initiative. Value of FDG-PET scans of non-demented patients in predicting rates of future cognitive and functional decline. Eur J Nucl Med Mol Imaging. 2017;44(8):1355–63.CrossRefPubMed Torosyan N, Mason K, Dahlbom M. Silverman DHS; Alzheimer’sDisease neuroimaging initiative. Value of FDG-PET scans of non-demented patients in predicting rates of future cognitive and functional decline. Eur J Nucl Med Mol Imaging. 2017;44(8):1355–63.CrossRefPubMed
43.
go back to reference Drzezga A, Riemenschneider M, Strassner BA, et al. Cerebral glucose metabolism in patients with AD and different APOE genotypes. Neurology. 2005;64:102–7.CrossRefPubMed Drzezga A, Riemenschneider M, Strassner BA, et al. Cerebral glucose metabolism in patients with AD and different APOE genotypes. Neurology. 2005;64:102–7.CrossRefPubMed
Metadata
Title
18F–FDG PET diagnostic and prognostic patterns do not overlap in Alzheimer’s disease (AD) patients at the mild cognitive impairment (MCI) stage
Authors
Silvia Morbelli
Matteo Bauckneht
Dario Arnaldi
Agnese Picco
Matteo Pardini
Andrea Brugnolo
Ambra Buschiazzo
Marco Pagani
Nicola Girtler
Alberto Nieri
Andrea Chincarini
Fabrizio De Carli
Gianmario Sambuceti
Flavio Nobili
Publication date
01-11-2017
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 12/2017
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-017-3790-5

Other articles of this Issue 12/2017

European Journal of Nuclear Medicine and Molecular Imaging 12/2017 Go to the issue