Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 8/2003

01-08-2003 | Original Article

Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study

Authors: Alexander Drzezga, Nicola Lautenschlager, Hartwig Siebner, Matthias Riemenschneider, Frode Willoch, Satoshi Minoshima, Markus Schwaiger, Alexander Kurz

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 8/2003

Login to get access

Abstract

A high percentage of patients with mild cognitive impairment (MCI) develop clinical dementia of the Alzheimer type (AD) within 1 year. The aim of this longitudinal study was to identify characteristic patterns of cerebral metabolism at baseline in patients converting from MCI to AD, and to evaluate the changes in these patterns over time. Baseline and follow-up examinations after 1 year were performed in 22 MCI patients (12 males, 10 females, aged 69.8±5.8 years); these examinations included neuropsychological testing, structural cranial magnetic resonance imaging and fluorine-18 fluorodeoxyglucose positron emission tomography (PET) evaluation of relative cerebral glucose metabolic rate (rCMRglc). Individual PET scans were stereotactically normalised with NEUROSTAT software (Univ. of Michigan, Ann Arbor, USA). Subsequently, statistical comparison of PET data with an age-matched healthy control population and between patient subgroups was performed using SPM 99 (Wellcome Dept. of Neuroimaging Sciences, London, UK). After 1 year, eight patients (36%) had developed probable AD (referred to as MCIAD), whereas 12 (55%) were still classified as having stable MCI (referred to as MCIMCI). Compared with the healthy control group, a reduced rCMRglc in AD-typical regions, including the temporoparietal and posterior cingulate cortex, was detected at baseline in patients with MCIAD. Abnormalities in the posterior cingulate cortex reached significance even in comparison with the MCIMCI group. After 1 year, MCIAD patients demonstrated an additional bilateral reduction of rCMRglc in prefrontal areas, along with a further progression of the abnormalities in the parietal and posterior cingulate cortex. No such changes were observed in the MCIMCI group. In patients with MCI, characteristic cerebral metabolic differences can be delineated at the time of initial presentation, which helps to define prognostic subgroups. A newly emerging reduction of rCMRglc in prefrontal cortical areas is associated with the transition from MCI to AD.
Literature
1.
go back to reference Kogure D, Matsuda H, Ohnishi T, et al. Longitudinal evaluation of early Alzheimer's disease using brain perfusion SPECT. J Nucl Med 2000; 41:1155–1162.PubMed Kogure D, Matsuda H, Ohnishi T, et al. Longitudinal evaluation of early Alzheimer's disease using brain perfusion SPECT. J Nucl Med 2000; 41:1155–1162.PubMed
2.
go back to reference Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment. Clinical characterization and outcome. Arch Neurol 1999; 56:303–308.PubMed Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment. Clinical characterization and outcome. Arch Neurol 1999; 56:303–308.PubMed
3.
go back to reference Arnaiz E, Jelic V, Almkvist O, et al. Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment. Neuroreport 2001; 12:851–855.PubMed Arnaiz E, Jelic V, Almkvist O, et al. Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment. Neuroreport 2001; 12:851–855.PubMed
4.
go back to reference Petersen RC. Mild cognitive impairment, and early Alzheimer's disease. The Neurologist 1995; 1:326–344. Petersen RC. Mild cognitive impairment, and early Alzheimer's disease. The Neurologist 1995; 1:326–344.
5.
go back to reference Petersen RC, Smith GE, Waring SC, Ivnik RJ, Kokmen E, Tangelos EG. Aging, memory, and mild cognitive impairment. Int Psychogeriatr 1997; Suppl 1:665–669. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Kokmen E, Tangelos EG. Aging, memory, and mild cognitive impairment. Int Psychogeriatr 1997; Suppl 1:665–669.
6.
go back to reference Roman GC, Tatemichi TK, Erkinjunti T, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 1993; 43:250–260.PubMed Roman GC, Tatemichi TK, Erkinjunti T, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 1993; 43:250–260.PubMed
7.
go back to reference Morris JC, Heyman A, Mohs RC, et al. The Consortium to Establish a Registry for Alzheimer's disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease. Neurology 1989; 39:1159–1165.PubMed Morris JC, Heyman A, Mohs RC, et al. The Consortium to Establish a Registry for Alzheimer's disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease. Neurology 1989; 39:1159–1165.PubMed
8.
go back to reference Morris JC, Edland S, Clark C, et al. The Consortium to Establish a Registry for Alzheimer's disease (CERAD). Part IV. Rating of cognitive change in the longitudinal assessment of probable Alzheimer's disease. Neurology 1993; 43:2457–2465.PubMed Morris JC, Edland S, Clark C, et al. The Consortium to Establish a Registry for Alzheimer's disease (CERAD). Part IV. Rating of cognitive change in the longitudinal assessment of probable Alzheimer's disease. Neurology 1993; 43:2457–2465.PubMed
9.
go back to reference Welsh K, Butters N, Hughes J, Mohs R, Heyman A. Detection of abnormal memory decline in mild cases of Alzheimer's disease using CERAD neuropsychological measures. Arch Neurol 1991; 48:278–281.PubMed Welsh K, Butters N, Hughes J, Mohs R, Heyman A. Detection of abnormal memory decline in mild cases of Alzheimer's disease using CERAD neuropsychological measures. Arch Neurol 1991; 48:278–281.PubMed
10.
go back to reference Welsh KA, Butters N, Mohs RC, et al. The Consortium to Establish a Registry for Alzheimer's disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology 1994; 44:609–614.PubMed Welsh KA, Butters N, Mohs RC, et al. The Consortium to Establish a Registry for Alzheimer's disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology 1994; 44:609–614.PubMed
11.
go back to reference Shulman KI, Shedletsky R, Silver IL. The challenge of time: clock-drawing and cognitive function in the elderly. Int J Geriatr Psychiatry 1993; 1:135–140. Shulman KI, Shedletsky R, Silver IL. The challenge of time: clock-drawing and cognitive function in the elderly. Int J Geriatr Psychiatry 1993; 1:135–140.
12.
go back to reference Thalmann B, Monsch AU, Schreittner M, et al. The CERAD neuropsychological assessment battery (CERAD-NAB). A minimal data set as a common tool for German-speaking Europe. Neurobiol Aging 2000; 21:30. Thalmann B, Monsch AU, Schreittner M, et al. The CERAD neuropsychological assessment battery (CERAD-NAB). A minimal data set as a common tool for German-speaking Europe. Neurobiol Aging 2000; 21:30.
13.
go back to reference Yesavage JA, Brink TL, Rose TL, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr 1983; 17:37–49. Yesavage JA, Brink TL, Rose TL, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr 1983; 17:37–49.
14.
go back to reference Gauggel S, Schmidt A. Was leistet die deutsche Version der Geriatrischen Depressionsskala (GDS)? Geriatrie Praxis 1995; 6:33–36. Gauggel S, Schmidt A. Was leistet die deutsche Version der Geriatrischen Depressionsskala (GDS)? Geriatrie Praxis 1995; 6:33–36.
15.
go back to reference McKhann G, Folstein M, Katzmann R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRA work group under the auspices of the Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984; 34:939–944.PubMed McKhann G, Folstein M, Katzmann R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRA work group under the auspices of the Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984; 34:939–944.PubMed
16.
go back to reference Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration. Neurology 1998; 51:1546–1554.PubMed Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration. Neurology 1998; 51:1546–1554.PubMed
17.
go back to reference Minoshima S, Berger KL, Lee KS, Mintun MA. An automated method for rotational correction and centering of three-dimensional functional brain images. J Nucl Med 1992; 33:1579–1585. Minoshima S, Berger KL, Lee KS, Mintun MA. An automated method for rotational correction and centering of three-dimensional functional brain images. J Nucl Med 1992; 33:1579–1585.
18.
go back to reference Minoshima S, Koeppe RA, Frey KA, Kuhl DE. Anatomic standardization: linear scaling and nonlinear warping of functional brain images. J Nucl Med 1994; 35:1528–1537.PubMed Minoshima S, Koeppe RA, Frey KA, Kuhl DE. Anatomic standardization: linear scaling and nonlinear warping of functional brain images. J Nucl Med 1994; 35:1528–1537.PubMed
19.
go back to reference Bartenstein P, Minoshima S, Hirsch C, et al. Quantitative assessment of cerebral blood flow in patients with Alzheimer's disease by SPECT. J Nucl Med 1997; 38:1095–1101.PubMed Bartenstein P, Minoshima S, Hirsch C, et al. Quantitative assessment of cerebral blood flow in patients with Alzheimer's disease by SPECT. J Nucl Med 1997; 38:1095–1101.PubMed
20.
go back to reference Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995; 36:1238–1248.PubMed Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995; 36:1238–1248.PubMed
21.
go back to reference Drzezga A, Arnold S, Minoshima S, et al. F-18 FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. J Nucl Med 1999; 40:737–746. Drzezga A, Arnold S, Minoshima S, et al. F-18 FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. J Nucl Med 1999; 40:737–746.
22.
go back to reference Talairach J, Tournoux, P. Co-planar stereotaxic atlas of the human brain. New York: Thieme, 1988. Talairach J, Tournoux, P. Co-planar stereotaxic atlas of the human brain. New York: Thieme, 1988.
23.
go back to reference Ishii K, Willoch F, Minoshima S, et al. Statistical brain mapping of18F-FDG PET in Alzheimer's disease: validation of anatomic standardization for atrophied brains. J Nucl Med 2001; 42:548–557.PubMed Ishii K, Willoch F, Minoshima S, et al. Statistical brain mapping of18F-FDG PET in Alzheimer's disease: validation of anatomic standardization for atrophied brains. J Nucl Med 2001; 42:548–557.PubMed
24.
go back to reference Signorini M, Paulesu E, Friston K, et al. Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: a clinical validation of statistical parametric mapping. Neuroimage 1999; 9:63–80.PubMed Signorini M, Paulesu E, Friston K, et al. Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: a clinical validation of statistical parametric mapping. Neuroimage 1999; 9:63–80.PubMed
25.
go back to reference Small GW, Ercoli LM, Silverman DH, et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. Proc Natl Acad Sci U S A 2000; 23:6037–6042.CrossRef Small GW, Ercoli LM, Silverman DH, et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. Proc Natl Acad Sci U S A 2000; 23:6037–6042.CrossRef
26.
go back to reference Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 1997; 42:85–94.PubMed Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 1997; 42:85–94.PubMed
27.
go back to reference Small GW, Leiter F. Neuroimaging for diagnosis of dementia. J Clin Psychiatry 1998; 59 Suppl 11:4–7. Small GW, Leiter F. Neuroimaging for diagnosis of dementia. J Clin Psychiatry 1998; 59 Suppl 11:4–7.
28.
go back to reference Ishii K. Clinical application of positron emission tomography for diagnosis of dementia. Ann Nucl Med 2002; 16:515–525.PubMed Ishii K. Clinical application of positron emission tomography for diagnosis of dementia. Ann Nucl Med 2002; 16:515–525.PubMed
29.
go back to reference Kordower JH, Chu Y, Stebbins GT, et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 2001; 49:202–213.CrossRefPubMed Kordower JH, Chu Y, Stebbins GT, et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 2001; 49:202–213.CrossRefPubMed
30.
go back to reference Wolf H, Jelic V, Gertz HJ, Nordberg A, Julin P, Wahlund LO. A critical discussion of the role of neuroimaging in mild cognitive impairment. Acta Neurol Scand Suppl 2003; 179:52–76.CrossRefPubMed Wolf H, Jelic V, Gertz HJ, Nordberg A, Julin P, Wahlund LO. A critical discussion of the role of neuroimaging in mild cognitive impairment. Acta Neurol Scand Suppl 2003; 179:52–76.CrossRefPubMed
31.
go back to reference Salat DH, Kaye JA, Janowsky JS. Selective preservation and degeneration within the prefrontal cortex in aging and Alzheimer disease. Arch Neurol 2001; 58:1403–1408.CrossRefPubMed Salat DH, Kaye JA, Janowsky JS. Selective preservation and degeneration within the prefrontal cortex in aging and Alzheimer disease. Arch Neurol 2001; 58:1403–1408.CrossRefPubMed
32.
go back to reference Brown DR, Hunter R, Wyper DJ, et al. Longitudinal changes in cognitive function and regional cerebral function in Alzheimer's disease: a SPECT blood flow study. J Psychiatr Res 1996; 30:109–126.PubMed Brown DR, Hunter R, Wyper DJ, et al. Longitudinal changes in cognitive function and regional cerebral function in Alzheimer's disease: a SPECT blood flow study. J Psychiatr Res 1996; 30:109–126.PubMed
33.
go back to reference Mielke R, Heiss WD. Positron emission tomography for diagnosis of Alzheimer's disease and vascular dementia. J Neural Transm Suppl 1998; 53:237–250.PubMed Mielke R, Heiss WD. Positron emission tomography for diagnosis of Alzheimer's disease and vascular dementia. J Neural Transm Suppl 1998; 53:237–250.PubMed
34.
go back to reference Fabrigoule C, Rouch I, Taberly A, et al. Cognitive process in preclinical phase of dementia. Brain 1998; 121:135–141.CrossRefPubMed Fabrigoule C, Rouch I, Taberly A, et al. Cognitive process in preclinical phase of dementia. Brain 1998; 121:135–141.CrossRefPubMed
Metadata
Title
Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study
Authors
Alexander Drzezga
Nicola Lautenschlager
Hartwig Siebner
Matthias Riemenschneider
Frode Willoch
Satoshi Minoshima
Markus Schwaiger
Alexander Kurz
Publication date
01-08-2003
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 8/2003
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-003-1194-1

Other articles of this Issue 8/2003

European Journal of Nuclear Medicine and Molecular Imaging 8/2003 Go to the issue