Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

γH2AX and Chk1 phosphorylation as predictive pharmacodynamic biomarkers of Chk1 inhibitor-chemotherapy combination treatments

Authors: Rebecca Rawlinson, Andrew J Massey

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

Chk1 inhibitors are currently in clinical trials in combination with a range of cytotoxic agents and have the potential to potentiate the clinical activity of a large number of standard of care chemotherapeutic agents. Utilizing pharmacodynamic biomarkers to optimize drug dose and scheduling in these trials could greatly enhance the likelihood of clinical success.

Methods

In this study, we evaluated the in vitro potentiation of the cytotoxicity of a range of cytotoxic chemotherapeutic drugs by the novel Chk1 inhibitor V158411 in p53 mutant colon cancer cells. Pharmacodynamic biomarkers were evaluated in vitro.

Results

V158411 potentiated the cytotoxicity of a range of chemotherapeutic agents with distinct mechanisms of action in p53 mutant colon cancer cell lines grown in anchorage dependent or independent culture conditions. Analysis of pharmacodynamic biomarker changes identified dependencies on the chemotherapeutic agent, the concentration of the chemotherapeutic and the duration of time between combination treatment and biomarker analysis. A reduction in total Chk1 and S296/S317/S345 phosphorylation occurred consistently with all cytotoxics in combination with V158411 but did not predict cell line potentiation. Induction of γH2AX levels was chemotherapeutic dependent and correlated closely with potentiation of gemcitabine and camptothecin in p53 mutant colon cancer cells.

Conclusions

Our results suggest that Chk1 phosphorylation could be a useful biomarker for monitoring inhibition of Chk1 activity in clinical trials involving a range of V158411-chemotherapy combinations and γH2AX induction as a predictor of potentiation in combinations containing gemcitabine or camptothecin.
Appendix
Available only for authorised users
Literature
1.
go back to reference Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA, Elledge SJ: Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 2000, 14: 1448-1459.CrossRefPubMedPubMedCentral Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA, Elledge SJ: Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 2000, 14: 1448-1459.CrossRefPubMedPubMedCentral
3.
go back to reference Smith J, Tho LM, Xu N, Gillespie DA: The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res. 2010, 108: 73-112.CrossRefPubMed Smith J, Tho LM, Xu N, Gillespie DA: The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res. 2010, 108: 73-112.CrossRefPubMed
6.
go back to reference Niida H, Katsuno Y, Banerjee B, Hande MP, Nakanishi M: Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol. 2007, 27: 2572-2581.CrossRefPubMedPubMedCentral Niida H, Katsuno Y, Banerjee B, Hande MP, Nakanishi M: Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol. 2007, 27: 2572-2581.CrossRefPubMedPubMedCentral
7.
go back to reference Ng CP, Lee HC, Ho CW, Arooz T, Siu WY, Lau A, Poon RY: Differential mode of regulation of the checkpoint kinases CHK1 and CHK2 by their regulatory domains. J Biol Chem. 2004, 279: 8808-8819.CrossRefPubMed Ng CP, Lee HC, Ho CW, Arooz T, Siu WY, Lau A, Poon RY: Differential mode of regulation of the checkpoint kinases CHK1 and CHK2 by their regulatory domains. J Biol Chem. 2004, 279: 8808-8819.CrossRefPubMed
8.
go back to reference Cho SH, Toouli CD, Fujii GH, Crain C, Parry D: Chk1 is essential for tumor cell viability following activation of the replication checkpoint. Cell Cycle. 2005, 4: 131-139.CrossRefPubMed Cho SH, Toouli CD, Fujii GH, Crain C, Parry D: Chk1 is essential for tumor cell viability following activation of the replication checkpoint. Cell Cycle. 2005, 4: 131-139.CrossRefPubMed
9.
go back to reference Kawabe T: G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther. 2004, 3: 513-519.PubMed Kawabe T: G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther. 2004, 3: 513-519.PubMed
10.
go back to reference Garrett MD, Collins I: Anticancer therapy with checkpoint inhibitors: what, where and when?. Trends Pharmacol Sci. 2011, 32: 308-316.CrossRefPubMed Garrett MD, Collins I: Anticancer therapy with checkpoint inhibitors: what, where and when?. Trends Pharmacol Sci. 2011, 32: 308-316.CrossRefPubMed
11.
go back to reference King C, Diaz H, Barnard D, Barda D, Clawson D, Blosser W, Cox K, Guo S, Marshall M: Characterization and preclinical development of LY2603618: a selective and potent Chk1 inhibitor. Invest New Drugs. 2013, 32: 213-226.CrossRefPubMed King C, Diaz H, Barnard D, Barda D, Clawson D, Blosser W, Cox K, Guo S, Marshall M: Characterization and preclinical development of LY2603618: a selective and potent Chk1 inhibitor. Invest New Drugs. 2013, 32: 213-226.CrossRefPubMed
12.
go back to reference Guzi TJ, Paruch K, Dwyer MP, Labroli M, Shanahan F, Davis N, Taricani L, Wiswell D, Seghezzi W, Penaflor E, Bhagwat B, Wang W, Gu D, Hsieh Y, Lee S, Liu M, Parry D: Targeting the replication checkpoint using SCH 900776, a potent and functionally selective CHK1 inhibitor identified via high content screening. Mol Cancer Ther. 2011, 10: 591-602.CrossRefPubMed Guzi TJ, Paruch K, Dwyer MP, Labroli M, Shanahan F, Davis N, Taricani L, Wiswell D, Seghezzi W, Penaflor E, Bhagwat B, Wang W, Gu D, Hsieh Y, Lee S, Liu M, Parry D: Targeting the replication checkpoint using SCH 900776, a potent and functionally selective CHK1 inhibitor identified via high content screening. Mol Cancer Ther. 2011, 10: 591-602.CrossRefPubMed
13.
go back to reference Chen T, Stephens PA, Middleton FK, Curtin NJ: Targeting the S and G2 checkpoint to treat cancer. Drug Discov Today. 2012, 17: 194-202.CrossRefPubMed Chen T, Stephens PA, Middleton FK, Curtin NJ: Targeting the S and G2 checkpoint to treat cancer. Drug Discov Today. 2012, 17: 194-202.CrossRefPubMed
14.
go back to reference Khleif SN, Doroshow JH, Hait WN: AACR-FDA-NCI Cancer Biomarkers Collaborative consensus report: advancing the use of biomarkers in cancer drug development. Clin Cancer Res. 2010, 16: 3299-3318.CrossRefPubMed Khleif SN, Doroshow JH, Hait WN: AACR-FDA-NCI Cancer Biomarkers Collaborative consensus report: advancing the use of biomarkers in cancer drug development. Clin Cancer Res. 2010, 16: 3299-3318.CrossRefPubMed
15.
go back to reference Carden CP, Sarker D, Postel-Vinay S, Yap TA, Attard G, Banerji U, Garrett MD, Thomas GV, Workman P, Kaye SB, de Bono JS: Can molecular biomarker-based patient selection in Phase I trials accelerate anticancer drug development?. Drug Discov Today. 2010, 15: 88-97.CrossRefPubMed Carden CP, Sarker D, Postel-Vinay S, Yap TA, Attard G, Banerji U, Garrett MD, Thomas GV, Workman P, Kaye SB, de Bono JS: Can molecular biomarker-based patient selection in Phase I trials accelerate anticancer drug development?. Drug Discov Today. 2010, 15: 88-97.CrossRefPubMed
16.
go back to reference de Bono JS, Ashworth A: Translating cancer research into targeted therapeutics. Nature. 2010, 467: 543-549.CrossRefPubMed de Bono JS, Ashworth A: Translating cancer research into targeted therapeutics. Nature. 2010, 467: 543-549.CrossRefPubMed
17.
go back to reference Tabusa H, Brooks T, Massey AJ: Knockdown of PAK4 or PAK1 inhibits the proliferation of mutant KRAS colon cancer cells independently of RAF/MEK/ERK and PI3K/AKT signaling. Mol Cancer Res. 2013, 11: 109-121.CrossRefPubMed Tabusa H, Brooks T, Massey AJ: Knockdown of PAK4 or PAK1 inhibits the proliferation of mutant KRAS colon cancer cells independently of RAF/MEK/ERK and PI3K/AKT signaling. Mol Cancer Res. 2013, 11: 109-121.CrossRefPubMed
18.
go back to reference Stokes S, Foloppe N, Fiumana A, Drysdale M, Bedford S, Webb P: Indolyl- Pyridone Derivatives having Checkpoint Kinase 1 Inhibitory Activity. World Intellectual Property Organization, [WO/2009/093012] Stokes S, Foloppe N, Fiumana A, Drysdale M, Bedford S, Webb P: Indolyl- Pyridone Derivatives having Checkpoint Kinase 1 Inhibitory Activity. World Intellectual Property Organization, [WO/2009/093012]
19.
go back to reference Zabludoff SD, Deng C, Grondine MR, Sheehy AM, Ashwell S, Caleb BL, Green S, Haye HR, Horn CL, Janetka JW, Liu D, Mouchet E, Ready S, Rosenthal JL, Queva C, Schwartz GK, Taylor KJ, Tse AN, Walker GE, White AM: AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther. 2008, 7: 2955-2966.CrossRefPubMed Zabludoff SD, Deng C, Grondine MR, Sheehy AM, Ashwell S, Caleb BL, Green S, Haye HR, Horn CL, Janetka JW, Liu D, Mouchet E, Ready S, Rosenthal JL, Queva C, Schwartz GK, Taylor KJ, Tse AN, Walker GE, White AM: AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther. 2008, 7: 2955-2966.CrossRefPubMed
20.
go back to reference Blasina A, Hallin J, Chen E, Arango ME, Kraynov E, Register J, Grant S, Ninkovic S, Chen P, Nichols T, O’Connor P, Anderes K: Breaching the DNA damage checkpoint via PF-00477736, a novel small-molecule inhibitor of checkpoint kinase 1. Mol Cancer Ther. 2008, 7: 2394-2404.CrossRefPubMed Blasina A, Hallin J, Chen E, Arango ME, Kraynov E, Register J, Grant S, Ninkovic S, Chen P, Nichols T, O’Connor P, Anderes K: Breaching the DNA damage checkpoint via PF-00477736, a novel small-molecule inhibitor of checkpoint kinase 1. Mol Cancer Ther. 2008, 7: 2394-2404.CrossRefPubMed
21.
go back to reference Massey AJ, Borgognoni J, Bentley C, Foloppe N, Fiumana A, Walmsley L: Context-dependent cell cycle checkpoint abrogation by a novel kinase inhibitor. PLoS One. 2010, 5: e13123-CrossRefPubMedPubMedCentral Massey AJ, Borgognoni J, Bentley C, Foloppe N, Fiumana A, Walmsley L: Context-dependent cell cycle checkpoint abrogation by a novel kinase inhibitor. PLoS One. 2010, 5: e13123-CrossRefPubMedPubMedCentral
22.
go back to reference Walton MI, Eve PD, Hayes A, Valenti M, de Haven BA, Box G, Boxall KJ, Aherne GW, Eccles SA, Raynaud FI, Williams DH, Reader JC, Collins I, Garrett MD: The preclinical pharmacology and therapeutic activity of the novel CHK1 inhibitor SAR-020106. Mol Cancer Ther. 2010, 9: 89-100.CrossRefPubMed Walton MI, Eve PD, Hayes A, Valenti M, de Haven BA, Box G, Boxall KJ, Aherne GW, Eccles SA, Raynaud FI, Williams DH, Reader JC, Collins I, Garrett MD: The preclinical pharmacology and therapeutic activity of the novel CHK1 inhibitor SAR-020106. Mol Cancer Ther. 2010, 9: 89-100.CrossRefPubMed
23.
go back to reference Xiao Y, Ramiscal J, Kowanetz K, Del NC, Malek S, Evangelista M, Blackwood E, Jackson PK, O’Brien T: Identification of preferred chemotherapeutics for combining with a CHK1 inhibitor. Mol Cancer Ther. 2013, 12: 2285-2295.CrossRefPubMed Xiao Y, Ramiscal J, Kowanetz K, Del NC, Malek S, Evangelista M, Blackwood E, Jackson PK, O’Brien T: Identification of preferred chemotherapeutics for combining with a CHK1 inhibitor. Mol Cancer Ther. 2013, 12: 2285-2295.CrossRefPubMed
24.
go back to reference Blackwood E, Epler J, Yen I, Flagella M, O’Brien T, Evangelista M, Schmidt S, Xiao Y, Choi J, Kowanetz K, Ramiscal J, Wong K, Jakubiak D, Yee S, Cain G, Gazzard L, Williams K, Halladay J, Jackson PK, Malek S: Combination drug scheduling defines a “window of opportunity” for chemopotentiation of gemcitabine by an orally bioavailable, selective ChK1 inhibitor, GNE-900. Mol Cancer Ther. 2013, 12: 1968-1980.CrossRefPubMed Blackwood E, Epler J, Yen I, Flagella M, O’Brien T, Evangelista M, Schmidt S, Xiao Y, Choi J, Kowanetz K, Ramiscal J, Wong K, Jakubiak D, Yee S, Cain G, Gazzard L, Williams K, Halladay J, Jackson PK, Malek S: Combination drug scheduling defines a “window of opportunity” for chemopotentiation of gemcitabine by an orally bioavailable, selective ChK1 inhibitor, GNE-900. Mol Cancer Ther. 2013, 12: 1968-1980.CrossRefPubMed
25.
go back to reference Weiss GJ, Donehower RC, Iyengar T, Ramanathan RK, Lewandowski K, Westin E, Hurt K, Hynes SM, Anthony SP, McKane S: Phase I dose-escalation study to examine the safety and tolerability of LY2603618, a checkpoint 1 kinase inhibitor, administered 1 day after pemetrexed 500 mg/m(2) every 21 days in patients with cancer. Invest New Drugs. 2013, 31: 136-144.CrossRefPubMed Weiss GJ, Donehower RC, Iyengar T, Ramanathan RK, Lewandowski K, Westin E, Hurt K, Hynes SM, Anthony SP, McKane S: Phase I dose-escalation study to examine the safety and tolerability of LY2603618, a checkpoint 1 kinase inhibitor, administered 1 day after pemetrexed 500 mg/m(2) every 21 days in patients with cancer. Invest New Drugs. 2013, 31: 136-144.CrossRefPubMed
26.
go back to reference Seto T, Esaki T, Hirai F, Arita S, Nosaki K, Makiyama A, Kometani T, Fujimoto C, Hamatake M, Takeoka H, Agbo F, Shi X: Phase I, dose-escalation study of AZD7762 alone and in combination with gemcitabine in Japanese patients with advanced solid tumours. Cancer Chemother Pharmacol. 2013, 72: 619-627.CrossRefPubMed Seto T, Esaki T, Hirai F, Arita S, Nosaki K, Makiyama A, Kometani T, Fujimoto C, Hamatake M, Takeoka H, Agbo F, Shi X: Phase I, dose-escalation study of AZD7762 alone and in combination with gemcitabine in Japanese patients with advanced solid tumours. Cancer Chemother Pharmacol. 2013, 72: 619-627.CrossRefPubMed
27.
go back to reference Karp JE, Thomas BM, Greer JM, Sorge C, Gore SD, Pratz KW, Smith BD, Flatten KS, Peterson K, Schneider P, Mackey K, Freshwater T, Levis MJ, McDevitt MA, Carraway HE, Gladstone DE, Showel MM, Loechner S, Parry DA, Horowitz JA, Isaacs R, Kaufmann SH: Phase I and pharmacologic trial of cytosine arabinoside with the selective checkpoint 1 inhibitor Sch 900776 in refractory acute leukemias. Clin Cancer Res. 2012, 18: 6723-6731.CrossRefPubMedPubMedCentral Karp JE, Thomas BM, Greer JM, Sorge C, Gore SD, Pratz KW, Smith BD, Flatten KS, Peterson K, Schneider P, Mackey K, Freshwater T, Levis MJ, McDevitt MA, Carraway HE, Gladstone DE, Showel MM, Loechner S, Parry DA, Horowitz JA, Isaacs R, Kaufmann SH: Phase I and pharmacologic trial of cytosine arabinoside with the selective checkpoint 1 inhibitor Sch 900776 in refractory acute leukemias. Clin Cancer Res. 2012, 18: 6723-6731.CrossRefPubMedPubMedCentral
28.
go back to reference Sausville E, Lorusso P, Carducci M, Carter J, Quinn MF, Malburg L, Azad N, Cosgrove D, Knight R, Barker P, Zabludoff S, Agbo F, Oakes P, Senderowicz A: Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother Pharmacol. 2014, 73: 539-549.CrossRefPubMedPubMedCentral Sausville E, Lorusso P, Carducci M, Carter J, Quinn MF, Malburg L, Azad N, Cosgrove D, Knight R, Barker P, Zabludoff S, Agbo F, Oakes P, Senderowicz A: Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother Pharmacol. 2014, 73: 539-549.CrossRefPubMedPubMedCentral
29.
go back to reference Montano R, Thompson R, Chung I, Hou H, Khan N, Eastman A: Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: cell cycle perturbation and impact of administration schedule in vitro and in vivo. BMC Cancer. 2013, 13: 604-CrossRefPubMedPubMedCentral Montano R, Thompson R, Chung I, Hou H, Khan N, Eastman A: Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: cell cycle perturbation and impact of administration schedule in vitro and in vivo. BMC Cancer. 2013, 13: 604-CrossRefPubMedPubMedCentral
30.
go back to reference Del Nagro CJ, Choi J, Xiao Y, Rangell L, Mohan S, Pandita A, Zha J, Jackson PK, O’Brien T: Chk1 inhibition in p53-deficient cell lines drives rapid chromosome fragmentation followed by caspase-independent cell death. Cell Cycle. 2014, 13: 303-314.CrossRefPubMed Del Nagro CJ, Choi J, Xiao Y, Rangell L, Mohan S, Pandita A, Zha J, Jackson PK, O’Brien T: Chk1 inhibition in p53-deficient cell lines drives rapid chromosome fragmentation followed by caspase-independent cell death. Cell Cycle. 2014, 13: 303-314.CrossRefPubMed
31.
go back to reference McNeely S, Conti C, Sheikh T, Patel H, Zabludoff S, Pommier Y, Schwartz G, Tse A: Chk1 inhibition after replicative stress activates a double strand break response mediated by ATM and DNA-dependent protein kinase. Cell Cycle. 2010, 9: 995-1004.CrossRefPubMed McNeely S, Conti C, Sheikh T, Patel H, Zabludoff S, Pommier Y, Schwartz G, Tse A: Chk1 inhibition after replicative stress activates a double strand break response mediated by ATM and DNA-dependent protein kinase. Cell Cycle. 2010, 9: 995-1004.CrossRefPubMed
32.
go back to reference Xiao Z, Xue J, Gu WZ, Bui M, Li G, Tao ZF, Lin NH, Sowin TJ, Zhang H: Cyclin B1 is an efficacy-predicting biomarker for Chk1 inhibitors. Biomarkers. 2008, 13: 579-596.CrossRefPubMed Xiao Z, Xue J, Gu WZ, Bui M, Li G, Tao ZF, Lin NH, Sowin TJ, Zhang H: Cyclin B1 is an efficacy-predicting biomarker for Chk1 inhibitors. Biomarkers. 2008, 13: 579-596.CrossRefPubMed
33.
go back to reference Parsels LA, Qian Y, Tanska DM, Gross M, Zhao L, Hassan MC, Arumugarajah S, Parsels JD, Hylander-Gans L, Simeone DM, Morosini D, Brown JL, Zabludoff SD, Maybaum J, Lawrence TS, Morgan MA: Assessment of chk1 phosphorylation as a pharmacodynamic biomarker of chk1 inhibition. Clin Cancer Res. 2011, 17: 3706-3715.CrossRefPubMedPubMedCentral Parsels LA, Qian Y, Tanska DM, Gross M, Zhao L, Hassan MC, Arumugarajah S, Parsels JD, Hylander-Gans L, Simeone DM, Morosini D, Brown JL, Zabludoff SD, Maybaum J, Lawrence TS, Morgan MA: Assessment of chk1 phosphorylation as a pharmacodynamic biomarker of chk1 inhibition. Clin Cancer Res. 2011, 17: 3706-3715.CrossRefPubMedPubMedCentral
34.
go back to reference Sidi S, Sanda T, Kennedy RD, Hagen AT, Jette CA, Hoffmans R, Pascual J, Imamura S, Kishi S, Amatruda JF, Kanki JP, Green DR, D’Andrea AA, Look AT: Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell. 2008, 133: 864-877.CrossRefPubMedPubMedCentral Sidi S, Sanda T, Kennedy RD, Hagen AT, Jette CA, Hoffmans R, Pascual J, Imamura S, Kishi S, Amatruda JF, Kanki JP, Green DR, D’Andrea AA, Look AT: Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell. 2008, 133: 864-877.CrossRefPubMedPubMedCentral
35.
go back to reference Manzl C, Fava LL, Krumschnabel G, Peintner L, Tanzer MC, Soratroi C, Bock FJ, Schuler F, Luef B, Geley S, Villunger A: Death of p53-defective cells triggered by forced mitotic entry in the presence of DNA damage is not uniquely dependent on Caspase-2 or the PIDDosome. Cell Death Dis. 2013, 4: e942-CrossRefPubMedPubMedCentral Manzl C, Fava LL, Krumschnabel G, Peintner L, Tanzer MC, Soratroi C, Bock FJ, Schuler F, Luef B, Geley S, Villunger A: Death of p53-defective cells triggered by forced mitotic entry in the presence of DNA damage is not uniquely dependent on Caspase-2 or the PIDDosome. Cell Death Dis. 2013, 4: e942-CrossRefPubMedPubMedCentral
36.
go back to reference Redon CE, Nakamura AJ, Martin OA, Parekh PR, Weyemi US, Bonner WM: Recent developments in the use of gamma-H2AX as a quantitative DNA double-strand break biomarker. Aging (Albany NY). 2011, 3: 168-174.CrossRef Redon CE, Nakamura AJ, Martin OA, Parekh PR, Weyemi US, Bonner WM: Recent developments in the use of gamma-H2AX as a quantitative DNA double-strand break biomarker. Aging (Albany NY). 2011, 3: 168-174.CrossRef
37.
go back to reference Redon CE, Nakamura AJ, Zhang YW, Ji JJ, Bonner WM, Kinders RJ, Parchment RE, Doroshow JH, Pommier Y: Histone gammaH2AX and poly(ADP-ribose) as clinical pharmacodynamic biomarkers. Clin Cancer Res. 2010, 16: 4532-4542.CrossRefPubMedPubMedCentral Redon CE, Nakamura AJ, Zhang YW, Ji JJ, Bonner WM, Kinders RJ, Parchment RE, Doroshow JH, Pommier Y: Histone gammaH2AX and poly(ADP-ribose) as clinical pharmacodynamic biomarkers. Clin Cancer Res. 2010, 16: 4532-4542.CrossRefPubMedPubMedCentral
38.
go back to reference Kinders RJ, Hollingshead M, Lawrence S, Ji J, Tabb B, Bonner WM, Pommier Y, Rubinstein L, Evrard YA, Parchment RE, Tomaszewski J, Doroshow JH: Development of a validated immunofluorescence assay for gammaH2AX as a pharmacodynamic marker of topoisomerase I inhibitor activity. Clin Cancer Res. 2010, 16: 5447-5457.CrossRefPubMedPubMedCentral Kinders RJ, Hollingshead M, Lawrence S, Ji J, Tabb B, Bonner WM, Pommier Y, Rubinstein L, Evrard YA, Parchment RE, Tomaszewski J, Doroshow JH: Development of a validated immunofluorescence assay for gammaH2AX as a pharmacodynamic marker of topoisomerase I inhibitor activity. Clin Cancer Res. 2010, 16: 5447-5457.CrossRefPubMedPubMedCentral
Metadata
Title
γH2AX and Chk1 phosphorylation as predictive pharmacodynamic biomarkers of Chk1 inhibitor-chemotherapy combination treatments
Authors
Rebecca Rawlinson
Andrew J Massey
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-483

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine