Skip to main content
Top
Published in: Tumor Biology 3/2015

01-03-2015 | Research Article

β1 integrin mediates colorectal cancer cell proliferation and migration through regulation of the Hedgehog pathway

Authors: Jia Song, Jixiang Zhang, Jing Wang, Jun Wang, Xufeng Guo, Weiguo Dong

Published in: Tumor Biology | Issue 3/2015

Login to get access

Abstract

β1 integrin (ITGB1) is the major expressed integrin protein of normal cells and tumor-associated cells. It is often up-regulated in human malignancies and is involved in many developmental processes, such as tumor progression and metastasis. However, little is known about the function of ITGB1 in colorectal cancer. We constructed lentiviral vectors expressing ITGB1 or ITGB1-specific RNA interference (RNAi) and an unrelated control vector. After infecting HT29 cells in vitro, proliferation and migration were evaluated by Cell Counting Kit 8 (CCK-8) assays, transwell invasion assays, and Western blots. The influence of lentivirus infection on the tumor development capacity of HT29 cells in vivo was examined by xenografting the tumor cells. The expression of ITGB1 in the xenografted tumor cells was analyzed by immunohistochemistry. The up-regulation of ITGB1 significantly increased the proliferation in HT29 cells in vitro. Moreover, we found that the overexpression of ITGB1 up-regulated sonic hedgehog (Shh) while down-regulating Gli1 and SuFu in HT29-ITGB1 cells compared to controls. Moreover, the levels of c-myc and cyclin D1 proteins were up-regulated. Transwell assays showed that the number of migrating HT29-RNAi cells was lower than that in the other cell groups, indicating that ITGB1 significantly enhances the invasive ability of HT29 cells. In addition to these in vitro results, ITGB1 was found to be a significantly effective growth factor in a xenografted tumor mouse model. These results suggest that ITGB1 induces growth and invasion in a human colorectal cancer cell line through the hedgehog (Hh) signaling pathway in vitro and in vivo.
Literature
1.
go back to reference Compton CC. Colorectal carcinoma: diagnostic, prognostic, and molecular features. Mod Pathol. 2003;16:376–88.CrossRefPubMed Compton CC. Colorectal carcinoma: diagnostic, prognostic, and molecular features. Mod Pathol. 2003;16:376–88.CrossRefPubMed
2.
3.
go back to reference Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMed Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMed
6.
go back to reference Dimou A, Syrigos KN, Saif MW. Disparities in colorectal cancer in African-Americans vs Whites: before and after diagnosis. World J Gastroenterol. 2009;15:3734–43.CrossRefPubMedPubMedCentral Dimou A, Syrigos KN, Saif MW. Disparities in colorectal cancer in African-Americans vs Whites: before and after diagnosis. World J Gastroenterol. 2009;15:3734–43.CrossRefPubMedPubMedCentral
7.
go back to reference Fedirko V, Tramacere I, Bagnardi V, Rota M, Scotti L, Islami F, et al. Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Ann Oncol. 2011;22:1958–72.CrossRefPubMed Fedirko V, Tramacere I, Bagnardi V, Rota M, Scotti L, Islami F, et al. Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Ann Oncol. 2011;22:1958–72.CrossRefPubMed
8.
go back to reference Perrigue MM, Kantor ED, Hastert TA, Patterson R, Potter JD, Neuhouser ML, et al. Eating frequency and risk of colorectal cancer. Cancer Causes Control. 2014;12:2107–15. Perrigue MM, Kantor ED, Hastert TA, Patterson R, Potter JD, Neuhouser ML, et al. Eating frequency and risk of colorectal cancer. Cancer Causes Control. 2014;12:2107–15.
9.
go back to reference Deng L, Gui Z, Zhao L, Wang J, Shen L. Diabetes mellitus and the incidence of colorectal cancer: an updated systematic review and meta-analysis. Dig Dis Sci. 2012;57:1576–85.CrossRefPubMed Deng L, Gui Z, Zhao L, Wang J, Shen L. Diabetes mellitus and the incidence of colorectal cancer: an updated systematic review and meta-analysis. Dig Dis Sci. 2012;57:1576–85.CrossRefPubMed
10.
go back to reference Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980;287:795–801.CrossRefPubMed Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980;287:795–801.CrossRefPubMed
11.
go back to reference Dahmane N, Ruizi AA. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 1999;126:3089–100.PubMed Dahmane N, Ruizi AA. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 1999;126:3089–100.PubMed
12.
go back to reference Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci U S A. 2004;101:12561–6.CrossRefPubMedPubMedCentral Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci U S A. 2004;101:12561–6.CrossRefPubMedPubMedCentral
13.
go back to reference Markku V, Jussi T. Hedgehog: functions and mechanisms. Genes Dev. 2008;22:2454–72.CrossRef Markku V, Jussi T. Hedgehog: functions and mechanisms. Genes Dev. 2008;22:2454–72.CrossRef
14.
16.
go back to reference Yan R, Peng X, Yuan X, Huang DL, Chen J, Lu QQ, et al. Suppression of growth and migration by blocking the hedgehog signaling pathway in gastric cancer cells. Cell Oncol. 2013;36:421–35.CrossRef Yan R, Peng X, Yuan X, Huang DL, Chen J, Lu QQ, et al. Suppression of growth and migration by blocking the hedgehog signaling pathway in gastric cancer cells. Cell Oncol. 2013;36:421–35.CrossRef
17.
go back to reference Wang H, Li YY, Wu YY, Nie YQ. Expression and clinical significance of hedgehog signaling pathway related components in colorectal cancer. Asian Pac J Cancer Prev. 2012;13:2319–24.CrossRefPubMed Wang H, Li YY, Wu YY, Nie YQ. Expression and clinical significance of hedgehog signaling pathway related components in colorectal cancer. Asian Pac J Cancer Prev. 2012;13:2319–24.CrossRefPubMed
18.
go back to reference Mazumdar T, DeVecchio J, Shi T, Jones J, Agyeman A, Houghton JA. Hedgehog signaling drives cellular survival in human colon carcinoma cells. Cancer Res. 2011;71:1092–102.CrossRefPubMed Mazumdar T, DeVecchio J, Shi T, Jones J, Agyeman A, Houghton JA. Hedgehog signaling drives cellular survival in human colon carcinoma cells. Cancer Res. 2011;71:1092–102.CrossRefPubMed
19.
go back to reference Hyne RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87.CrossRef Hyne RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87.CrossRef
20.
go back to reference Melker AA, Sonnenberg A. Integrins: alternative splicing as a mechanism to regulate ligand binding and integrin signaling events. Bioessays. 1999;21:499–509.CrossRefPubMed Melker AA, Sonnenberg A. Integrins: alternative splicing as a mechanism to regulate ligand binding and integrin signaling events. Bioessays. 1999;21:499–509.CrossRefPubMed
22.
go back to reference Aumailley M, Pesch M, Tunggal L, Gaill F, Fässler R. Altered synthesis of laminin 1 and absence of basement membrane component deposition in β1 integrin deficient embryoid bodies. J Cell Sci. 2001;113:259–68. Aumailley M, Pesch M, Tunggal L, Gaill F, Fässler R. Altered synthesis of laminin 1 and absence of basement membrane component deposition in β1 integrin deficient embryoid bodies. J Cell Sci. 2001;113:259–68.
23.
go back to reference Arao S, Masumoto A, Otsuki M. β1 integrins play an essential role in adhesion and invasion of pancreatic carcinoma cells. Pancreas. 2000;20:129–37.CrossRefPubMed Arao S, Masumoto A, Otsuki M. β1 integrins play an essential role in adhesion and invasion of pancreatic carcinoma cells. Pancreas. 2000;20:129–37.CrossRefPubMed
24.
go back to reference Geng S, Guo Y, Wang Q, Li L, Wang J. Cancer stem-like cells enriched with CD29 and CD44 markers exhibit molecular characteristics with epithelial–mesenchymal transition in squamous cell carcinoma. Arch Dermatol Res. 2013;305:35–47.CrossRefPubMed Geng S, Guo Y, Wang Q, Li L, Wang J. Cancer stem-like cells enriched with CD29 and CD44 markers exhibit molecular characteristics with epithelial–mesenchymal transition in squamous cell carcinoma. Arch Dermatol Res. 2013;305:35–47.CrossRefPubMed
25.
go back to reference Stroeke PJ, van Rijthoven EA, Boer E, Geerts D, Roos E. Cytoplasmic domain mutants of β1 integrin, expressed in β1-knockout lymphoma cells, have distinct effects on adhesion, invasion and metastasis. Oncogene. 2000;19:1232–8.CrossRef Stroeke PJ, van Rijthoven EA, Boer E, Geerts D, Roos E. Cytoplasmic domain mutants of β1 integrin, expressed in β1-knockout lymphoma cells, have distinct effects on adhesion, invasion and metastasis. Oncogene. 2000;19:1232–8.CrossRef
26.
go back to reference Li N, Zhang Y, Naylor MJ, Schatzmann F, Maurer F, Wintermantel T, et al. Beta integrins regulates mammary proliferation and maintain the integrity of mammary alveoli. EMBO J. 2005;24:1942–53.CrossRefPubMedPubMedCentral Li N, Zhang Y, Naylor MJ, Schatzmann F, Maurer F, Wintermantel T, et al. Beta integrins regulates mammary proliferation and maintain the integrity of mammary alveoli. EMBO J. 2005;24:1942–53.CrossRefPubMedPubMedCentral
27.
go back to reference Brakebusch C, Fassler R. Beta1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev. 2005;24:403–11.CrossRefPubMed Brakebusch C, Fassler R. Beta1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev. 2005;24:403–11.CrossRefPubMed
28.
go back to reference Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E, et al. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res. 2004;64:8585–94.CrossRefPubMed Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E, et al. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res. 2004;64:8585–94.CrossRefPubMed
29.
go back to reference Song J, Peng XL, Ji MY, Ai MH, Zhang JX, Dong WG. Hugl-1 induces apoptosis in esophageal carcinoma cells both in vitro and in vivo. World J Gastroenterol. 2013;19:4143–52. Song J, Peng XL, Ji MY, Ai MH, Zhang JX, Dong WG. Hugl-1 induces apoptosis in esophageal carcinoma cells both in vitro and in vivo. World J Gastroenterol. 2013;19:4143–52.
30.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C (T)) method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C (T)) method. Methods. 2001;25:402–8.CrossRefPubMed
31.
go back to reference Lei XF, Lv XG, Liu M, Yang ZR, Ji MY, Guo XF, et al. Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem Biophys Res Commun. 2012;417:864–8.CrossRefPubMed Lei XF, Lv XG, Liu M, Yang ZR, Ji MY, Guo XF, et al. Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem Biophys Res Commun. 2012;417:864–8.CrossRefPubMed
32.
go back to reference Liu QS, Zhang J, Liu M, Dong WG. Lentiviral-mediated miRNA against liver-intestine cadherin suppresses tumor growth and invasiveness of human gastric cancer. Cancer Sci. 2010;101:1807–12.CrossRefPubMed Liu QS, Zhang J, Liu M, Dong WG. Lentiviral-mediated miRNA against liver-intestine cadherin suppresses tumor growth and invasiveness of human gastric cancer. Cancer Sci. 2010;101:1807–12.CrossRefPubMed
33.
go back to reference Zhang J, Liu QS, Dong WG. Blockade of proliferation and migration of gastric cancer via targeting CDH17 with an artificial microRNA. Med Oncol. 2011;28:494–501.CrossRefPubMed Zhang J, Liu QS, Dong WG. Blockade of proliferation and migration of gastric cancer via targeting CDH17 with an artificial microRNA. Med Oncol. 2011;28:494–501.CrossRefPubMed
34.
go back to reference Han JB, Tao ZZ, Chen SM, Kong YG, Xiao BH. Adenovirus-mediated transfer of tris-shRNAs induced apoptosis of nasopharyngeal carcinoma cell in vitro and in vivo. Cancer Lett. 2011;209:162–9.CrossRef Han JB, Tao ZZ, Chen SM, Kong YG, Xiao BH. Adenovirus-mediated transfer of tris-shRNAs induced apoptosis of nasopharyngeal carcinoma cell in vitro and in vivo. Cancer Lett. 2011;209:162–9.CrossRef
35.
go back to reference Yao ES, Zhang H, Chen YY, Lee B, Chew K, Moore D. Increased beta1 integrin is associated with decreased survival in invasive breast cancer. Cancer Res. 2007;67:659–64.CrossRefPubMed Yao ES, Zhang H, Chen YY, Lee B, Chew K, Moore D. Increased beta1 integrin is associated with decreased survival in invasive breast cancer. Cancer Res. 2007;67:659–64.CrossRefPubMed
36.
go back to reference Varnat F, Siegl-Cachedenier I, Malerba M, Gervaz P, Ruizi AA. Loss of WNT-TCF addiction and enhancement of HH-GLI1 signalling define the metastatic transition of human colon carcinomas. EMBO Mol Med. 2010;2:1–18.CrossRef Varnat F, Siegl-Cachedenier I, Malerba M, Gervaz P, Ruizi AA. Loss of WNT-TCF addiction and enhancement of HH-GLI1 signalling define the metastatic transition of human colon carcinomas. EMBO Mol Med. 2010;2:1–18.CrossRef
37.
go back to reference You S, Zhou J, Chen S, Zhou P, Lv JH, Han X, et al. PTCH1, a receptor of Hedgehog signaling pathway, is correlated with metastatic potential of colorectal cancer. Ups J Med Sci. 2010;115:169–75.CrossRefPubMedPubMedCentral You S, Zhou J, Chen S, Zhou P, Lv JH, Han X, et al. PTCH1, a receptor of Hedgehog signaling pathway, is correlated with metastatic potential of colorectal cancer. Ups J Med Sci. 2010;115:169–75.CrossRefPubMedPubMedCentral
38.
go back to reference Yoshimoto AN, Bernardazzi C, Carneiro AJ, Elia CS, Martinusso CA, Ventura GM, et al. Hedgehog pathway signaling regulates human colon carcinoma HT-29 epithelial cell line apoptosis and cytokine secretion. PLoS One. 2012;7:e45332.CrossRefPubMedPubMedCentral Yoshimoto AN, Bernardazzi C, Carneiro AJ, Elia CS, Martinusso CA, Ventura GM, et al. Hedgehog pathway signaling regulates human colon carcinoma HT-29 epithelial cell line apoptosis and cytokine secretion. PLoS One. 2012;7:e45332.CrossRefPubMedPubMedCentral
39.
go back to reference Blaess S, Graus-Porta D, Belvindrah R, Radakovits R, Pons S, Littlewood-Evans A, et al. β1-integrins are critical for cerebellar granule cell precursor proliferation. J Neurosci. 2004;24:3402–12.CrossRefPubMedPubMedCentral Blaess S, Graus-Porta D, Belvindrah R, Radakovits R, Pons S, Littlewood-Evans A, et al. β1-integrins are critical for cerebellar granule cell precursor proliferation. J Neurosci. 2004;24:3402–12.CrossRefPubMedPubMedCentral
40.
go back to reference Svard J, Heby-Henricson K, Persson-Lek M, Rozell B, Lauth M, Bergstrom A, et al. Genetic elimination of suppressor of fused reveals an essential repressor function in the mammalian hedgehog signaling pathway. Dev Cell. 2006;10:187–97.CrossRefPubMed Svard J, Heby-Henricson K, Persson-Lek M, Rozell B, Lauth M, Bergstrom A, et al. Genetic elimination of suppressor of fused reveals an essential repressor function in the mammalian hedgehog signaling pathway. Dev Cell. 2006;10:187–97.CrossRefPubMed
Metadata
Title
β1 integrin mediates colorectal cancer cell proliferation and migration through regulation of the Hedgehog pathway
Authors
Jia Song
Jixiang Zhang
Jing Wang
Jun Wang
Xufeng Guo
Weiguo Dong
Publication date
01-03-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 3/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2808-x

Other articles of this Issue 3/2015

Tumor Biology 3/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine