Skip to main content
Top
Published in: Journal of Bone and Mineral Metabolism 2/2013

01-03-2013 | Perspective

Zinc signal: a new player in osteobiology

Authors: Toshiyuki Fukada, Shintaro Hojyo, Tatsuya Furuichi

Published in: Journal of Bone and Mineral Metabolism | Issue 2/2013

Login to get access

Abstract

Disturbed zinc (Zn) homeostasis in mammals is mainly characterized by impaired bone generation accompanied with growth retardation. However, the underlying mechanisms that determine how Zn controls bone homeostasis remain to be defined. Zn homeostasis is tightly controlled by Zn transporter families. Recent studies have shown that Zn transporter-mediated Zn ion (Zn2+) behaves as a signaling factor, called Zn signal, that exerts a multiple function in cellular events, showing why Zn has a vital effect on mammalian bone growth and regeneration. This perspective put importance on the principal mechanisms of Zn participation in mammalian bone homeostasis, shifting our focus on the role of Zn from simply a nutrient to a signaling molecule that fine-tunes intracellular signaling events.
Literature
2.
go back to reference Prasad AS, Halsted JA, Nadimi M (1961) Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med 31:532–546PubMedCrossRef Prasad AS, Halsted JA, Nadimi M (1961) Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med 31:532–546PubMedCrossRef
3.
go back to reference Bergman B, Soremark R (1968) Autoradiographic studies on the distribution of zinc-65 in mice. J Nutr 94:6–12PubMed Bergman B, Soremark R (1968) Autoradiographic studies on the distribution of zinc-65 in mice. J Nutr 94:6–12PubMed
4.
go back to reference Yamaguchi M, Gao YH (1998) Potent effect of zinc acexamate on bone components in the femoral-metaphyseal tissues of elderly female rats. Gen Pharmacol 30:423–427PubMedCrossRef Yamaguchi M, Gao YH (1998) Potent effect of zinc acexamate on bone components in the femoral-metaphyseal tissues of elderly female rats. Gen Pharmacol 30:423–427PubMedCrossRef
5.
go back to reference Hirano T, Murakami M, Fukada T, Nishida K, Yamasaki S et al (2008) Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv Immunol 97:149–176PubMedCrossRef Hirano T, Murakami M, Fukada T, Nishida K, Yamasaki S et al (2008) Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv Immunol 97:149–176PubMedCrossRef
6.
go back to reference Maret W (2011) Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Biometals 24:411–418PubMedCrossRef Maret W (2011) Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Biometals 24:411–418PubMedCrossRef
7.
go back to reference Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T (2011) Zinc homeostasis and signaling in health and diseases: zinc signaling. J Biol Inorg Chem 16:1123–1134PubMedCrossRef Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T (2011) Zinc homeostasis and signaling in health and diseases: zinc signaling. J Biol Inorg Chem 16:1123–1134PubMedCrossRef
8.
go back to reference Haase H, Maret W (2003) Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp Cell Res 291:289–298PubMedCrossRef Haase H, Maret W (2003) Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp Cell Res 291:289–298PubMedCrossRef
9.
go back to reference Nishida K, Hasegawa A, Nakae S, Oboki K, Saito H et al (2009) Zinc transporter Znt5/Slc30a5 is required for the mast cell-mediated delayed-type allergic reaction but not the immediate-type reaction. J Exp Med 206:1351–1364PubMedCrossRef Nishida K, Hasegawa A, Nakae S, Oboki K, Saito H et al (2009) Zinc transporter Znt5/Slc30a5 is required for the mast cell-mediated delayed-type allergic reaction but not the immediate-type reaction. J Exp Med 206:1351–1364PubMedCrossRef
10.
go back to reference Yamashita S, Miyagi C, Fukada T, Kagara N, Che YS et al (2004) Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature (Lond) 429:298–302CrossRef Yamashita S, Miyagi C, Fukada T, Kagara N, Che YS et al (2004) Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature (Lond) 429:298–302CrossRef
11.
go back to reference Kitabayashi C, Fukada T, Kanamoto M, Ohashi W, Hojyo S et al (2010) Zinc suppresses Th17 development via inhibition of STAT3 activation. Int Immunol 22:375–386PubMedCrossRef Kitabayashi C, Fukada T, Kanamoto M, Ohashi W, Hojyo S et al (2010) Zinc suppresses Th17 development via inhibition of STAT3 activation. Int Immunol 22:375–386PubMedCrossRef
12.
go back to reference Nilsson O, Marino R, De Luca F, Phillip M, Baron J (2005) Endocrine regulation of the growth plate. Horm Res 64:157–165PubMedCrossRef Nilsson O, Marino R, De Luca F, Phillip M, Baron J (2005) Endocrine regulation of the growth plate. Horm Res 64:157–165PubMedCrossRef
13.
go back to reference Procter AM, Phillips JA 3rd, Cooper DN (1998) The molecular genetics of growth hormone deficiency. Hum Genet 103:255–272PubMedCrossRef Procter AM, Phillips JA 3rd, Cooper DN (1998) The molecular genetics of growth hormone deficiency. Hum Genet 103:255–272PubMedCrossRef
14.
go back to reference MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130:1500S–1508SPubMed MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130:1500S–1508SPubMed
15.
go back to reference Kronenberg HM (2003) Developmental regulation of the growth plate. Nature (Lond) 423:332–336CrossRef Kronenberg HM (2003) Developmental regulation of the growth plate. Nature (Lond) 423:332–336CrossRef
16.
go back to reference Rossi L, Migliaccio S, Corsi A, Marzia M, Bianco P et al (2001) Reduced growth and skeletal changes in zinc-deficient growing rats are due to impaired growth plate activity and inanition. J Nutr 131:1142–1146PubMed Rossi L, Migliaccio S, Corsi A, Marzia M, Bianco P et al (2001) Reduced growth and skeletal changes in zinc-deficient growing rats are due to impaired growth plate activity and inanition. J Nutr 131:1142–1146PubMed
17.
go back to reference Michaelsson G, Ljunghall K, Danielson BG (1980) Zinc in epidermis and dermis in healthy subjects. Acta Dermato-Venereol 60:295–299 Michaelsson G, Ljunghall K, Danielson BG (1980) Zinc in epidermis and dermis in healthy subjects. Acta Dermato-Venereol 60:295–299
18.
go back to reference Molokhia MM, Portnoy B (1969) Neutron activation analysis of trace elements in skin. 3. Zinc in normal skin. Br J Dermatol 81:759–762PubMedCrossRef Molokhia MM, Portnoy B (1969) Neutron activation analysis of trace elements in skin. 3. Zinc in normal skin. Br J Dermatol 81:759–762PubMedCrossRef
19.
go back to reference Cobourne MT, Sharpe PT (2003) Tooth and jaw: molecular mechanisms of patterning in the first branchial arch. Arch Oral Biol 48:1–14PubMedCrossRef Cobourne MT, Sharpe PT (2003) Tooth and jaw: molecular mechanisms of patterning in the first branchial arch. Arch Oral Biol 48:1–14PubMedCrossRef
20.
go back to reference Cao X, Chen D (2005) The BMP signaling and in vivo bone formation. Gene (Amst) 357:1–8CrossRef Cao X, Chen D (2005) The BMP signaling and in vivo bone formation. Gene (Amst) 357:1–8CrossRef
22.
go back to reference Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N et al (2004) Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet 36:855–860PubMedCrossRef Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N et al (2004) Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet 36:855–860PubMedCrossRef
23.
go back to reference Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14:251–270PubMedCrossRef Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14:251–270PubMedCrossRef
24.
go back to reference Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M (2004) Overview of mammalian zinc transporters. Cell Mol Life Sci 61:49–68PubMedCrossRef Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M (2004) Overview of mammalian zinc transporters. Cell Mol Life Sci 61:49–68PubMedCrossRef
25.
go back to reference Fukada T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3:662–674PubMedCrossRef Fukada T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3:662–674PubMedCrossRef
26.
go back to reference Kambe T (2011) An overview of a wide range of functions of ZnT and Zip zinc transporters in the secretory pathway. Biosci Biotechnol Biochem 75:1036–1043PubMedCrossRef Kambe T (2011) An overview of a wide range of functions of ZnT and Zip zinc transporters in the secretory pathway. Biosci Biotechnol Biochem 75:1036–1043PubMedCrossRef
27.
go back to reference Kambe T, Weaver BP, Andrews GK (2008) The genetics of essential metal homeostasis during development. Genesis 46:214–228PubMedCrossRef Kambe T, Weaver BP, Andrews GK (2008) The genetics of essential metal homeostasis during development. Genesis 46:214–228PubMedCrossRef
28.
go back to reference Huang L, Gitschier J (1997) A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet 17:292–297PubMedCrossRef Huang L, Gitschier J (1997) A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet 17:292–297PubMedCrossRef
29.
go back to reference Chowanadisai W, Lonnerdal B, Kelleher SL (2006) Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem 281:39699–39707PubMedCrossRef Chowanadisai W, Lonnerdal B, Kelleher SL (2006) Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem 281:39699–39707PubMedCrossRef
30.
go back to reference Wang X, Zhou B (2010) Dietary zinc absorption: a play of Zips and ZnTs in the gut. IUBMB Life 62:176–182PubMedCrossRef Wang X, Zhou B (2010) Dietary zinc absorption: a play of Zips and ZnTs in the gut. IUBMB Life 62:176–182PubMedCrossRef
31.
go back to reference Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J (2002) A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet 71:66–73PubMedCrossRef Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J (2002) A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet 71:66–73PubMedCrossRef
32.
go back to reference Kury S, Dreno B, Bezieau S, Giraudet S, Kharfi M et al (2002) Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet 31:239–240PubMedCrossRef Kury S, Dreno B, Bezieau S, Giraudet S, Kharfi M et al (2002) Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet 31:239–240PubMedCrossRef
33.
go back to reference Dufner-Beattie J, Weaver BP, Geiser J, Bilgen M, Larson M et al (2007) The mouse acrodermatitis enteropathica gene Slc39a4 (Zip4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Hum Mol Genet 16:1391–1399PubMedCrossRef Dufner-Beattie J, Weaver BP, Geiser J, Bilgen M, Larson M et al (2007) The mouse acrodermatitis enteropathica gene Slc39a4 (Zip4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Hum Mol Genet 16:1391–1399PubMedCrossRef
34.
go back to reference Wang F, Kim BE, Petris MJ, Eide DJ (2004) The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells. J Biol Chem 279:51433–51441PubMedCrossRef Wang F, Kim BE, Petris MJ, Eide DJ (2004) The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells. J Biol Chem 279:51433–51441PubMedCrossRef
35.
go back to reference Huang ZL, Dufner-Beattie J, Andrews GK (2006) Expression and regulation of SLC39A family zinc transporters in the developing mouse intestine. Dev Biol 295:571–579PubMedCrossRef Huang ZL, Dufner-Beattie J, Andrews GK (2006) Expression and regulation of SLC39A family zinc transporters in the developing mouse intestine. Dev Biol 295:571–579PubMedCrossRef
36.
go back to reference Dufner-Beattie J, Kuo YM, Gitschier J, Andrews GK (2004) The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J Biol Chem 279:49082–49090PubMedCrossRef Dufner-Beattie J, Kuo YM, Gitschier J, Andrews GK (2004) The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J Biol Chem 279:49082–49090PubMedCrossRef
37.
go back to reference Wang X, Wu Y, Zhou B (2009) Dietary zinc absorption is mediated by ZnT1 in Drosophila melanogaster. FASEB J 23:2650–2661PubMedCrossRef Wang X, Wu Y, Zhou B (2009) Dietary zinc absorption is mediated by ZnT1 in Drosophila melanogaster. FASEB J 23:2650–2661PubMedCrossRef
38.
go back to reference Hojyo S, Fukada T, Shimoda S, Ohashi W, Bin BH et al (2011) The zinc transporter SLC39A14/ZIP14 controls G-protein coupled receptor-mediated signaling required for systemic growth. PLoS ONE 6:e18059PubMedCrossRef Hojyo S, Fukada T, Shimoda S, Ohashi W, Bin BH et al (2011) The zinc transporter SLC39A14/ZIP14 controls G-protein coupled receptor-mediated signaling required for systemic growth. PLoS ONE 6:e18059PubMedCrossRef
40.
go back to reference Ohlsson C, Bengtsson BA, Isaksson OG, Andreassen TT, Slootweg MC (1998) Growth hormone and bone. Endocr Rev 19:55–79PubMedCrossRef Ohlsson C, Bengtsson BA, Isaksson OG, Andreassen TT, Slootweg MC (1998) Growth hormone and bone. Endocr Rev 19:55–79PubMedCrossRef
41.
go back to reference Bin BH, Fukada T, Hosaka T, Yamasaki S, Ohashi W et al (2011) Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers–Danlos syndrome. J Biol Chem 286:40255–40265PubMedCrossRef Bin BH, Fukada T, Hosaka T, Yamasaki S, Ohashi W et al (2011) Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers–Danlos syndrome. J Biol Chem 286:40255–40265PubMedCrossRef
42.
go back to reference Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K et al (2008) The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One 3:e3642PubMedCrossRef Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K et al (2008) The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One 3:e3642PubMedCrossRef
43.
go back to reference Fukada T, Asada Y, Mishima K, Shimoda S, Saito I (2011) Slc39a13/Zip13: a crucial zinc transporter involved in tooth development and inherited disorders. J Oral Biosci 53:1–12CrossRef Fukada T, Asada Y, Mishima K, Shimoda S, Saito I (2011) Slc39a13/Zip13: a crucial zinc transporter involved in tooth development and inherited disorders. J Oral Biosci 53:1–12CrossRef
44.
go back to reference Steinmann B, Royce PM (eds) (2002) Connective tissue and its heritable disorders, 2nd edn. Wiley-Liss, New York Steinmann B, Royce PM (eds) (2002) Connective tissue and its heritable disorders, 2nd edn. Wiley-Liss, New York
45.
go back to reference Steinmann B, Royce PM, Superti-Furga A (2002) The Ehlers–Danlos syndrome. In: Steinmann B, Royce PM (eds) Connective tissue and its heritable disorders, 2nd edn. Wiley-Liss, New York, pp 431–524CrossRef Steinmann B, Royce PM, Superti-Furga A (2002) The Ehlers–Danlos syndrome. In: Steinmann B, Royce PM (eds) Connective tissue and its heritable disorders, 2nd edn. Wiley-Liss, New York, pp 431–524CrossRef
47.
go back to reference Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R et al (2011) Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 155A:943–968PubMed Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R et al (2011) Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 155A:943–968PubMed
48.
go back to reference Giunta C, Elcioglu NH, Albrecht B, Eich G, Chambaz C et al (2008) Spondylocheiro dysplastic form of the Ehlers–Danlos syndrome–an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet 82:1290–1305PubMedCrossRef Giunta C, Elcioglu NH, Albrecht B, Eich G, Chambaz C et al (2008) Spondylocheiro dysplastic form of the Ehlers–Danlos syndrome–an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet 82:1290–1305PubMedCrossRef
49.
go back to reference Inoue K, Matsuda K, Itoh M, Kawaguchi H, Tomoike H et al (2002) Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5. Hum Mol Genet 11:1775–1784PubMedCrossRef Inoue K, Matsuda K, Itoh M, Kawaguchi H, Tomoike H et al (2002) Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5. Hum Mol Genet 11:1775–1784PubMedCrossRef
50.
go back to reference Hambidge KM, Krebs NF (2007) Zinc deficiency: a special challenge. J Nutr 137:1101–1105PubMed Hambidge KM, Krebs NF (2007) Zinc deficiency: a special challenge. J Nutr 137:1101–1105PubMed
51.
52.
go back to reference Yamasaki S, Hasegawa A, Hojyo S, Ohashi W, Fukada T et al (2012) A novel role of the L-type calcium channel alpha1D subunit as a gatekeeper for intracellular zinc signaling: zinc wave. PLOS ONE 7:e39654PubMedCrossRef Yamasaki S, Hasegawa A, Hojyo S, Ohashi W, Fukada T et al (2012) A novel role of the L-type calcium channel alpha1D subunit as a gatekeeper for intracellular zinc signaling: zinc wave. PLOS ONE 7:e39654PubMedCrossRef
53.
54.
go back to reference Weaver BP, Dufner-Beattie J, Kambe T, Andrews GK (2007) Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5). Biol Chem 388:1301–1312PubMedCrossRef Weaver BP, Dufner-Beattie J, Kambe T, Andrews GK (2007) Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5). Biol Chem 388:1301–1312PubMedCrossRef
Metadata
Title
Zinc signal: a new player in osteobiology
Authors
Toshiyuki Fukada
Shintaro Hojyo
Tatsuya Furuichi
Publication date
01-03-2013
Publisher
Springer Japan
Published in
Journal of Bone and Mineral Metabolism / Issue 2/2013
Print ISSN: 0914-8779
Electronic ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-012-0409-6

Other articles of this Issue 2/2013

Journal of Bone and Mineral Metabolism 2/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine