Skip to main content
Top
Published in: Journal of Neuro-Oncology 2/2017

01-01-2017 | Topic Review

Withaferin A and its potential role in glioblastoma (GBM)

Authors: Jasdeep Dhami, Edwin Chang, Sanjiv S. Gambhir

Published in: Journal of Neuro-Oncology | Issue 2/2017

Login to get access

Abstract

Within the Ayurvedic medical tradition of India, Ashwagandha (Withania somnifera) is a well-known herb. A large number of withanolides have been isolated from both its roots and its leaves and many have been assessed for their pharmacological activities. Amongst them, Withaferin A is one of its most bioactive phytoconstituents. Due to the lactonal steroid’s potential to modulate multiple oncogenic pathways, Withaferin A has gained much attention as a possible anti-neoplastic agent. This review focuses on the use of Withaferin A alone, or in combination with other treatments, as a newer option for therapy against the most aggressive variant of brain tumors, Glioblastoma. We survey the various studies that delineate Withaferin A’s anticancer mechanisms, its toxicity profiles, its pharmacokinetics and pharmacodynamics and its immuno-modulating properties.
Appendix
Available only for authorised users
Literature
2.
3.
go back to reference Alam N, Hossain M, Khalil MI et al (2011) Recent advances in elucidating the biological properties of Withania somnifera and its potential role in health benefits. Phytochem Rev 11:97–112. doi:10.1007/s11101-011-9221-5 CrossRef Alam N, Hossain M, Khalil MI et al (2011) Recent advances in elucidating the biological properties of Withania somnifera and its potential role in health benefits. Phytochem Rev 11:97–112. doi:10.​1007/​s11101-011-9221-5 CrossRef
4.
go back to reference Tiwari R, Chakraborty S, Saminathan M et al (2014) Ashwagandha (Withania somnifera): role in safeguarding health, immunomodulatory effects, combating infections and therapeutic application: a review. J Biol Sci 2:77–94 Tiwari R, Chakraborty S, Saminathan M et al (2014) Ashwagandha (Withania somnifera): role in safeguarding health, immunomodulatory effects, combating infections and therapeutic application: a review. J Biol Sci 2:77–94
6.
go back to reference Kurup PA (1956) Antibiotic principle of the leaves of Withania somnifera. Curr Sci 25:57 Kurup PA (1956) Antibiotic principle of the leaves of Withania somnifera. Curr Sci 25:57
7.
go back to reference Kurup PA (1958) The antibacterial principle of Withania somnifera. I. Isolation and antibacterial activity. Antibiot Chemother 8:511 Kurup PA (1958) The antibacterial principle of Withania somnifera. I. Isolation and antibacterial activity. Antibiot Chemother 8:511
8.
go back to reference Devi PU (2014) Withania somnifera Dunal (Ashwagandha):Potential plant source of a promising dug for cancer chemotherapy and radiosensitization. Indian J Exp Biol 34:927–932 Devi PU (2014) Withania somnifera Dunal (Ashwagandha):Potential plant source of a promising dug for cancer chemotherapy and radiosensitization. Indian J Exp Biol 34:927–932
9.
go back to reference Lavie D, Glotter E, Shvo Y (1965) Constituents of Withania somnifera Dun. Part IV. The structure of withaferin A. J Chem Soc Resumed 7517. doi:10.1039/jr9650007517 Lavie D, Glotter E, Shvo Y (1965) Constituents of Withania somnifera Dun. Part IV. The structure of withaferin A. J Chem Soc Resumed 7517. doi:10.​1039/​jr9650007517
10.
go back to reference Shohat B, Gitter S, Abraham A, Lavie D (1967) Antitumor activity of Withaferin A (NSC-101088). Cancer Chemother Rep 51:1–6 Shohat B, Gitter S, Abraham A, Lavie D (1967) Antitumor activity of Withaferin A (NSC-101088). Cancer Chemother Rep 51:1–6
11.
go back to reference Budhiraja RD, Krishan P, Sudhir S (2000) Biological activity of Withanolides. J Sci Ind Res 59:904–911 Budhiraja RD, Krishan P, Sudhir S (2000) Biological activity of Withanolides. J Sci Ind Res 59:904–911
12.
go back to reference Fuska J, Prokska B, Williamson J (1987) Microbiological and chemical dehydrogenation of Withaferin A. Folia Microbiol (Praha) 32:112–115CrossRef Fuska J, Prokska B, Williamson J (1987) Microbiological and chemical dehydrogenation of Withaferin A. Folia Microbiol (Praha) 32:112–115CrossRef
13.
go back to reference Fuska J, Khadlova A, Sturdikova M et al (1985) Biotransformation of Withaferin-A by a culture of arthrobacter simplex. Folia Microbiol 30:427–432CrossRef Fuska J, Khadlova A, Sturdikova M et al (1985) Biotransformation of Withaferin-A by a culture of arthrobacter simplex. Folia Microbiol 30:427–432CrossRef
14.
go back to reference Fuska J, Fuskova A, Rosazza P (1984) Novel cytotoxic and antitumor agents.IV. Withaferin A: relation of its structure to the in vitro cytotoxic effects on P388 cells. Neoplasma 31(1):31–36PubMed Fuska J, Fuskova A, Rosazza P (1984) Novel cytotoxic and antitumor agents.IV. Withaferin A: relation of its structure to the in vitro cytotoxic effects on P388 cells. Neoplasma 31(1):31–36PubMed
15.
21.
go back to reference Mohan R, Hammers H, Bargagna-Mohan P, Zhan X (2004) Withaferin A is a potent inhibitor or angiogenesis. Angiogenesis 115–22. Mohan R, Hammers H, Bargagna-Mohan P, Zhan X (2004) Withaferin A is a potent inhibitor or angiogenesis. Angiogenesis 115–22.
24.
26.
go back to reference Gupta S, Reuter S, Kannappan R, Yadav V (2010) Modification of cysteine 179 of IkappaBalpha kinase by nimbolide leads to down-regulation of NF-kappaB-regulated cell survival and proliferative proteins and sensitization of tumor cells to chemotherapeutic agents. J Biol Chem 285:35406–35417. doi:10.1074/jbc.M110.161984 CrossRefPubMedPubMedCentral Gupta S, Reuter S, Kannappan R, Yadav V (2010) Modification of cysteine 179 of IkappaBalpha kinase by nimbolide leads to down-regulation of NF-kappaB-regulated cell survival and proliferative proteins and sensitization of tumor cells to chemotherapeutic agents. J Biol Chem 285:35406–35417.  doi:10.​1074/​jbc.​M110.​161984 CrossRefPubMedPubMedCentral
27.
go back to reference Kim BH, Lee J-Y, Seo JH et al (2007) Artemisolide is a typical inhibitor of IκB kinase β targeting cysteine-179 residue and down-regulates NF-κB-dependent TNF-α expression in LPS-activated macrophages. Biochem Biophys Res Commun 361:593–598. doi:10.1016/j.bbrc.2007.07.069 CrossRefPubMed Kim BH, Lee J-Y, Seo JH et al (2007) Artemisolide is a typical inhibitor of IκB kinase β targeting cysteine-179 residue and down-regulates NF-κB-dependent TNF-α expression in LPS-activated macrophages. Biochem Biophys Res Commun 361:593–598. doi:10.​1016/​j.​bbrc.​2007.​07.​069 CrossRefPubMed
28.
go back to reference Liang M-C, Bardhan S, Pace EA et al (2006) Inhibition of transcription factor NF-κB signaling proteins IKKβ and p65 through specific cysteine residues by epoxyquinone A monomer: correlation with its anti-cancer cell growth activity. Biochem Pharmacol 71:634–645. doi:10.1016/j.bcp.2005.11.013 CrossRefPubMed Liang M-C, Bardhan S, Pace EA et al (2006) Inhibition of transcription factor NF-κB signaling proteins IKKβ and p65 through specific cysteine residues by epoxyquinone A monomer: correlation with its anti-cancer cell growth activity. Biochem Pharmacol 71:634–645. doi:10.​1016/​j.​bcp.​2005.​11.​013 CrossRefPubMed
30.
go back to reference Sen N, Banerjee B, Das B, Ganguly A (2007) Apoptosis is induced in leishmanial cells by a novel protein kinase inhibitor withaferin A and is facilitated by apoptotic topoisomerase I-DNA complex. Cell Death Differ 14:358–367. doi:10.1038/sj.cdd.4402002 CrossRefPubMed Sen N, Banerjee B, Das B, Ganguly A (2007) Apoptosis is induced in leishmanial cells by a novel protein kinase inhibitor withaferin A and is facilitated by apoptotic topoisomerase I-DNA complex. Cell Death Differ 14:358–367. doi:10.​1038/​sj.​cdd.​4402002 CrossRefPubMed
31.
go back to reference Grover A, Shandilya A, Agrawal V et al (2011) Blocking the chaperone kinome pathway: mechanistic insights into a novel dual inhibition approach for supra-additive suppression of malignant tumors. Biochem Biophys Res Commun 404:498–503. doi:10.1016/j.bbrc.2010.12.010 CrossRefPubMed Grover A, Shandilya A, Agrawal V et al (2011) Blocking the chaperone kinome pathway: mechanistic insights into a novel dual inhibition approach for supra-additive suppression of malignant tumors. Biochem Biophys Res Commun 404:498–503. doi:10.​1016/​j.​bbrc.​2010.​12.​010 CrossRefPubMed
34.
go back to reference Mendillo ML, Santagata S, Koeva M, al et (2013) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. PubMed Cent 150:549–562. doi:10.1016/j.cell.2012.06.031 Mendillo ML, Santagata S, Koeva M, al et (2013) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. PubMed Cent 150:549–562.  doi:10.​1016/​j.​cell.​2012.​06.​031
35.
go back to reference Zou J, Guo Y, Guettouche T et al (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480CrossRefPubMed Zou J, Guo Y, Guettouche T et al (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480CrossRefPubMed
37.
38.
go back to reference Munagala R, Kausar H, Munjal C, Gupta RC (2011) Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis 32:1697–1705. doi:10.1093/carcin/bgr192 CrossRefPubMed Munagala R, Kausar H, Munjal C, Gupta RC (2011) Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis 32:1697–1705. doi:10.​1093/​carcin/​bgr192 CrossRefPubMed
40.
go back to reference Ndlovu MN, Van Lint C, Van Wesemael K et al (2009) Hyperactivated NF-kappaB and AP-1 transcription factors promote highly accessible chromatin and constitutive transcription across the interleukin-6 gene promoter in metastatic breast cancer cells. Mol Cell Biol 29:5488–5504. doi:10.1128/MCB.01657-08 CrossRefPubMed Ndlovu MN, Van Lint C, Van Wesemael K et al (2009) Hyperactivated NF-kappaB and AP-1 transcription factors promote highly accessible chromatin and constitutive transcription across the interleukin-6 gene promoter in metastatic breast cancer cells. Mol Cell Biol 29:5488–5504. doi:10.​1128/​MCB.​01657-08 CrossRefPubMed
42.
go back to reference Widodo N, Kaur K, Shrestha BG et al (2007) Selective killing of cancer cells by leaf extract of ashwagandha: identification of a tumor-inhibitory factor and the first molecular insights to its effect. Clin Cancer Res 13:2298–2306. doi:10.1158/1078-0432.CCR-06-0948 CrossRefPubMed Widodo N, Kaur K, Shrestha BG et al (2007) Selective killing of cancer cells by leaf extract of ashwagandha: identification of a tumor-inhibitory factor and the first molecular insights to its effect. Clin Cancer Res 13:2298–2306. doi:10.​1158/​1078-0432.​CCR-06-0948 CrossRefPubMed
43.
go back to reference Kataria H, Shah N, Kaul SC et al (2011) Water extract of ashwagandha leaves limits proliferation and migration, and induces differentiation in glioma cells. Evid Based Complement Alternat Med 2011:1–12. doi:10.1093/ecam/nep188 CrossRef Kataria H, Shah N, Kaul SC et al (2011) Water extract of ashwagandha leaves limits proliferation and migration, and induces differentiation in glioma cells. Evid Based Complement Alternat Med 2011:1–12. doi:10.​1093/​ecam/​nep188 CrossRef
44.
go back to reference Thaiparambil JT, Bender L, Ganesh T et al (2011) Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int J Cancer 129:2744–2755. doi:10.1002/ijc.25938 CrossRefPubMed Thaiparambil JT, Bender L, Ganesh T et al (2011) Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int J Cancer 129:2744–2755. doi:10.​1002/​ijc.​25938 CrossRefPubMed
45.
go back to reference Patil D, Gautam M, Mishra S et al (2013) Determination of withaferin A and withanolide A in mice plasma using high-performance liquid chromatography-tandem mass spectrometry: application to pharmacokinetics after oral administration of Withania somnifera aqueous extract. J Pharm Biomed Anal 80:203–212. doi:10.1016/j.jpba.2013.03.001 CrossRefPubMed Patil D, Gautam M, Mishra S et al (2013) Determination of withaferin A and withanolide A in mice plasma using high-performance liquid chromatography-tandem mass spectrometry: application to pharmacokinetics after oral administration of Withania somnifera aqueous extract. J Pharm Biomed Anal 80:203–212. doi:10.​1016/​j.​jpba.​2013.​03.​001 CrossRefPubMed
47.
48.
go back to reference Gorgan PT (2014) Withaferin A: a novel therapeutic approach for malignant brain tumors. KU ScholarWorks 33(5):1462–1476 Gorgan PT (2014) Withaferin A: a novel therapeutic approach for malignant brain tumors. KU ScholarWorks 33(5):1462–1476
49.
go back to reference Panda S, Kar A (1998) Changes in thyroid hormone concentrations after administration of ashwagandha root extract to adult male mice. J PharmPharmacol 50:1065–1068 Panda S, Kar A (1998) Changes in thyroid hormone concentrations after administration of ashwagandha root extract to adult male mice. J PharmPharmacol 50:1065–1068
52.
go back to reference Grogan PT, Sarkaria JN, Timmermann BN, Cohen MS (2014) Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Invest New Drugs 32:604–617. doi:10.1007/s10637-014-0084-7 CrossRefPubMedPubMedCentral Grogan PT, Sarkaria JN, Timmermann BN, Cohen MS (2014) Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Invest New Drugs 32:604–617. doi:10.​1007/​s10637-014-0084-7 CrossRefPubMedPubMedCentral
53.
go back to reference Shah N, Kataria H, Kaul SC et al (2009) Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: Combinational approach for enhanced differentiation. Cancer Sci 100:1740–1747. doi:10.1111/j.1349-7006.2009.01236.x CrossRefPubMed Shah N, Kataria H, Kaul SC et al (2009) Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: Combinational approach for enhanced differentiation. Cancer Sci 100:1740–1747. doi:10.​1111/​j.​1349-7006.​2009.​01236.​x CrossRefPubMed
56.
58.
59.
go back to reference Palyi I, Tyihak E, Palyi V (2015) Cytological effects of compounds isolated from Withania Somnifera Dun. Herba Hung 8:73–78 Palyi I, Tyihak E, Palyi V (2015) Cytological effects of compounds isolated from Withania Somnifera Dun. Herba Hung 8:73–78
60.
go back to reference Batia S, Gitter S, Lavie D (1970) Effect of Withaferin on Ehrlich carcinoma-cytological observation. Int J Cancer 5(2):244–252CrossRef Batia S, Gitter S, Lavie D (1970) Effect of Withaferin on Ehrlich carcinoma-cytological observation. Int J Cancer 5(2):244–252CrossRef
62.
go back to reference Shohat B (1973) Effect of Withaferin A on cells in tissue culture. ZKrebsforsch 80:97–102CrossRef Shohat B (1973) Effect of Withaferin A on cells in tissue culture. ZKrebsforsch 80:97–102CrossRef
63.
go back to reference Yoshida M, Hoshi A, Kuretani K (1979) Relationship between chemical structure and antitumor activity of Withaferin A analogues. J Pharm Dyn 2:92–97CrossRef Yoshida M, Hoshi A, Kuretani K (1979) Relationship between chemical structure and antitumor activity of Withaferin A analogues. J Pharm Dyn 2:92–97CrossRef
64.
go back to reference Begum VH, Sadique J (1987) Effect of Withania somnifera on glycosaminoglycan synthesis in carrageenin-induced AiR pouch granuloma. Biochem Med Metab Biol 38:272–277CrossRefPubMed Begum VH, Sadique J (1987) Effect of Withania somnifera on glycosaminoglycan synthesis in carrageenin-induced AiR pouch granuloma. Biochem Med Metab Biol 38:272–277CrossRefPubMed
65.
go back to reference Devi PU, Sharada AC, Solomon FE (1993) Antitumor and Radiosensitizing effect of Withania somnifera (Ashwagandha) on a transplantable mouse tumor, Sarcoma-180. Indian J Exp Biol 31:607–611PubMed Devi PU, Sharada AC, Solomon FE (1993) Antitumor and Radiosensitizing effect of Withania somnifera (Ashwagandha) on a transplantable mouse tumor, Sarcoma-180. Indian J Exp Biol 31:607–611PubMed
66.
go back to reference Devi PU, Sharada AC, Solomon FE (1995) In vivo growth inhibitory and radiosensitizing effects of Withaferin A on mouse Ehrlich ascites carcinoma. Cancer Lett 95:189–193CrossRefPubMed Devi PU, Sharada AC, Solomon FE (1995) In vivo growth inhibitory and radiosensitizing effects of Withaferin A on mouse Ehrlich ascites carcinoma. Cancer Lett 95:189–193CrossRefPubMed
67.
go back to reference Sharada AC, Solomon FE (1996) Antitumor and radiosensitizing effect of Withania A on mouse ehrlich ascities carcinoma in vivo. Acta Oncol 35:95–100CrossRefPubMed Sharada AC, Solomon FE (1996) Antitumor and radiosensitizing effect of Withania A on mouse ehrlich ascities carcinoma in vivo. Acta Oncol 35:95–100CrossRefPubMed
68.
go back to reference Devi PU (1996) Withania somnifera Dunal (Ashwagandha): potential plant source of a promising drug for cancer chemotherapy and radiosensitization. Indian J Exp Biol 34(10):927–932PubMed Devi PU (1996) Withania somnifera Dunal (Ashwagandha): potential plant source of a promising drug for cancer chemotherapy and radiosensitization. Indian J Exp Biol 34(10):927–932PubMed
69.
go back to reference Devi PU, Akagi K, Ostapenko V, al et (2003) Withaferin A: a new radiosensitizer from the Indian medicinal plant Withania somnifera. Int J Radiat Biol 69:193–197CrossRef Devi PU, Akagi K, Ostapenko V, al et (2003) Withaferin A: a new radiosensitizer from the Indian medicinal plant Withania somnifera. Int J Radiat Biol 69:193–197CrossRef
70.
go back to reference Devi PU, Kamath R (2003) Radiosensitizing effect of Withaferin A combined with hyperthermia on mouse fibrosarcoma and melanoma. J Radiat Res 44:1–6CrossRef Devi PU, Kamath R (2003) Radiosensitizing effect of Withaferin A combined with hyperthermia on mouse fibrosarcoma and melanoma. J Radiat Res 44:1–6CrossRef
71.
go back to reference Mandal C, Dutta A, Mallick A et al (2008) Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis 13:1450–1464. doi:10.1007/s10495-008-0271-0 CrossRefPubMed Mandal C, Dutta A, Mallick A et al (2008) Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis 13:1450–1464. doi:10.​1007/​s10495-008-0271-0 CrossRefPubMed
72.
74.
go back to reference Devi PU, Sharada AC, Solomon FE, Kamath MS (1992) In vivo growth inhibitory effect of Withania Somnifera (Ashwagandha) on a transplantable mouse model, Sarcoma 180. Indian J Exp Biol 30:169–172PubMed Devi PU, Sharada AC, Solomon FE, Kamath MS (1992) In vivo growth inhibitory effect of Withania Somnifera (Ashwagandha) on a transplantable mouse model, Sarcoma 180. Indian J Exp Biol 30:169–172PubMed
75.
go back to reference Shohat B, Kirson I, Lavie D (1978) Immunosuppressive activity of two plant steroidal lactones withaferin A and withanolide. Biomedicine 28(1):18–24PubMed Shohat B, Kirson I, Lavie D (1978)  Immunosuppressive activity of two plant steroidal lactones withaferin A and withanolide.  Biomedicine 28(1):18–24PubMed
77.
78.
go back to reference Verma SK, Shaban A, Purohit R et al (2012) Immunomodulatory activity of Withania somnifera (L.). J Chem Pharm Res 4:559–561 Verma SK, Shaban A, Purohit R et al (2012) Immunomodulatory activity of Withania somnifera (L.). J Chem Pharm Res 4:559–561
80.
go back to reference Malik F, Singh J, Khajuria A et al (2007) A standardized root extract of Withania somnifera and its major constituent withanolide A elicit humoral and cell-mediated immune responses by up regulation of Th1-dominant polarization in BALB/c mice. Life Sci 80:1525–1538. doi:10.1016/j.lfs.2007.01.029 CrossRefPubMed Malik F, Singh J, Khajuria A et al (2007) A standardized root extract of Withania somnifera and its major constituent withanolide A elicit humoral and cell-mediated immune responses by up regulation of Th1-dominant polarization in BALB/c mice. Life Sci 80:1525–1538. doi:10.​1016/​j.​lfs.​2007.​01.​029 CrossRefPubMed
82.
go back to reference Sharada AC, Solomon FE, Devi PU (1993) Toxicity of Withania somnifera root extract in rats and mice. Int J Pharmacog 3:205–212CrossRef Sharada AC, Solomon FE, Devi PU (1993) Toxicity of Withania somnifera root extract in rats and mice. Int J Pharmacog 3:205–212CrossRef
84.
go back to reference Sehgal VN, Verma P, bhattacharya SN (2014) fixed drug eruption caused by ashwagandha (Wihania somnifera):a widely used ayurvedic drug. Case Study 10:48–49. Sehgal VN, Verma P, bhattacharya SN (2014) fixed drug eruption caused by ashwagandha (Wihania somnifera):a widely used ayurvedic drug. Case Study 10:48–49.
Metadata
Title
Withaferin A and its potential role in glioblastoma (GBM)
Authors
Jasdeep Dhami
Edwin Chang
Sanjiv S. Gambhir
Publication date
01-01-2017
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 2/2017
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-016-2303-x

Other articles of this Issue 2/2017

Journal of Neuro-Oncology 2/2017 Go to the issue