Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Whole body oxygen uptake and evoked knee torque in response to low frequency electrical stimulation of the quadriceps muscles: V O 2 frequency response to NMES

Authors: Conor M Minogue, Brian M Caulfield, Madeleine M Lowery

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

There is emerging evidence that isometric Neuromuscular Electrical Stimulation (NMES) may offer a way to elicit therapeutically significant increases in whole-body oxygen uptake in order to deliver aerobic exercise to patients unable to exercise volitionally, with consequent gains in cardiovascular health. The optimal stimulation frequency to elicit a significant and sustained pulmonary oxygen uptake has not been determined. The aim of this study was to examine the frequency response of the oxygen uptake and evoked torque due to NMES of the quadriceps muscles across a range of low frequencies spanning the twitch to tetanus transition.

Methods

Ten healthy male subjects underwent bilateral NMES of the quadriceps muscles comprising eight 4 minute bouts of intermittent stimulation at selected frequencies in the range 1 to 12 Hz, interspersed with 4 minutes rest periods. Respiratory gases and knee extensor torque were simultaneously monitored throughout. Multiple linear regression was used to fit the resulting data to an energetic model which expressed the energy rate in terms of the pulse frequency, the torque time integral and a factor representing the accumulated force developed per unit time.

Results

Additional oxygen uptake increased over the frequency range to a maximum of 564 (SD 114) ml min-1 at 12 Hz, and the respiratory exchange ratio was close to unity from 4 to 12 Hz. While the highest induced torque occurred at 12 Hz, the peak of the force development factor occurred at 6 Hz. The regression model accounted for 88% of the variability in the observed energetic response.

Conclusions

Taking into account the requirement to avoid prolonged tetanic contractions and to minimize evoked torque, the results suggest that the ideal frequency for sustainable aerobic exercise is 4 to 5 Hz, which coincided in this study with the frequency above which significant twitch force summation occurred.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bax L, Staes F, Verhagen A: Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Med 2005, 35: 191-212. 10.2165/00007256-200535030-00002CrossRefPubMed Bax L, Staes F, Verhagen A: Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Med 2005, 35: 191-212. 10.2165/00007256-200535030-00002CrossRefPubMed
2.
go back to reference Theurel J, Lepers R, Pardon L, Maffiuletti NA: Differences in cardiorespiratory and neuromuscular responses between voluntary and stimulated contractions of the quadriceps femoris muscle. Respir Physiol Neurobiol 2006, 157: 341-347.CrossRefPubMed Theurel J, Lepers R, Pardon L, Maffiuletti NA: Differences in cardiorespiratory and neuromuscular responses between voluntary and stimulated contractions of the quadriceps femoris muscle. Respir Physiol Neurobiol 2006, 157: 341-347.CrossRefPubMed
3.
go back to reference Elder CP, Mahoney ET, Black CD, Slade JM, Dudley GA: Oxygen cost of dynamic or isometric exercise relative to recruited muscle mass. Dyn Med 2006, 5: 1-8. 10.1186/1476-5918-5-1CrossRef Elder CP, Mahoney ET, Black CD, Slade JM, Dudley GA: Oxygen cost of dynamic or isometric exercise relative to recruited muscle mass. Dyn Med 2006, 5: 1-8. 10.1186/1476-5918-5-1CrossRef
4.
go back to reference Hamada T, Sasaki H, Hayashi T, Moritani T, Nakao K: Enhancement of whole body glucose uptake during and after human skeletal muscle low-frequency electrical stimulation. J Appl Physiol 2003, 94: 2107-2112.CrossRefPubMed Hamada T, Sasaki H, Hayashi T, Moritani T, Nakao K: Enhancement of whole body glucose uptake during and after human skeletal muscle low-frequency electrical stimulation. J Appl Physiol 2003, 94: 2107-2112.CrossRefPubMed
5.
go back to reference Poole RB, Harrold CP, Burridge JH, Byrne CD, Holt RI: Electrical muscle stimulation acutely mimics exercise in neurologically intact individuals but has limited clinical benefits in patients with type 2 diabetes. Diabetes Obes Metab 2005, 7: 344-351. 10.1111/j.1463-1326.2004.00400.xCrossRefPubMed Poole RB, Harrold CP, Burridge JH, Byrne CD, Holt RI: Electrical muscle stimulation acutely mimics exercise in neurologically intact individuals but has limited clinical benefits in patients with type 2 diabetes. Diabetes Obes Metab 2005, 7: 344-351. 10.1111/j.1463-1326.2004.00400.xCrossRefPubMed
6.
go back to reference Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP: American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sport Exer 2011, 43: 1334-1359. 10.1249/MSS.0b013e318213fefbCrossRef Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP: American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sport Exer 2011, 43: 1334-1359. 10.1249/MSS.0b013e318213fefbCrossRef
7.
go back to reference AACPR: Guidelines for Cardiac Rehabilitation and Secondary Prevention Programs. 4th edition. American Association of Cardiovascular and Pulmonary Rehabilitation; 2004. AACPR: Guidelines for Cardiac Rehabilitation and Secondary Prevention Programs. 4th edition. American Association of Cardiovascular and Pulmonary Rehabilitation; 2004.
8.
go back to reference Hettinga DM, Andrews BJ: Oxygen consumption during functional electrical stimulation-assisted exercise in persons with spinal cord injury: implications for fitness and health. Sports Med 2008, 38: 825-838. 10.2165/00007256-200838100-00003CrossRefPubMed Hettinga DM, Andrews BJ: Oxygen consumption during functional electrical stimulation-assisted exercise in persons with spinal cord injury: implications for fitness and health. Sports Med 2008, 38: 825-838. 10.2165/00007256-200838100-00003CrossRefPubMed
9.
go back to reference Szecsi J, Fornusek C, Krause P, Straube A: Low-frequency rectangular pulse is superior to middle frequency alternating current stimulation in cycling of people with spinal cord injury. Arch Phys Med Rehabil 2007, 88: 338-345. 10.1016/j.apmr.2006.12.026CrossRefPubMed Szecsi J, Fornusek C, Krause P, Straube A: Low-frequency rectangular pulse is superior to middle frequency alternating current stimulation in cycling of people with spinal cord injury. Arch Phys Med Rehabil 2007, 88: 338-345. 10.1016/j.apmr.2006.12.026CrossRefPubMed
10.
go back to reference Dobsak P, Novakova M, Fiser B, Siegelova J, Balcarkova P, Spinarova L, Vitovec J, Minami N, Nagasaka M, Kohzuki M, et al.: Electrical stimulation of skeletal muscles. An alternative to aerobic exercise training in patients with chronic heart failure? Int Heart J 2006, 47: 441-453. 10.1536/ihj.47.441CrossRefPubMed Dobsak P, Novakova M, Fiser B, Siegelova J, Balcarkova P, Spinarova L, Vitovec J, Minami N, Nagasaka M, Kohzuki M, et al.: Electrical stimulation of skeletal muscles. An alternative to aerobic exercise training in patients with chronic heart failure? Int Heart J 2006, 47: 441-453. 10.1536/ihj.47.441CrossRefPubMed
11.
go back to reference Maillefert JF, Eicher JC, Walker P, Dulieu V, Rouhier-Marcer I, Branly F, Cohen M, Brunotte F, Wolf JE, Casillas JM, Didier JP: Effects of low-frequency electrical stimulation of quadriceps and calf muscles in patients with chronic heart failure. J Cardiopulm Rehabil 1998, 18: 277-282. 10.1097/00008483-199807000-00004CrossRefPubMed Maillefert JF, Eicher JC, Walker P, Dulieu V, Rouhier-Marcer I, Branly F, Cohen M, Brunotte F, Wolf JE, Casillas JM, Didier JP: Effects of low-frequency electrical stimulation of quadriceps and calf muscles in patients with chronic heart failure. J Cardiopulm Rehabil 1998, 18: 277-282. 10.1097/00008483-199807000-00004CrossRefPubMed
12.
go back to reference Nuhr MJ, Pette D, Berger R, Quittan M, Crevenna R, Huelsman M, Wiesinger GF, Moser P, Fialka-Moser V, Pacher R: Beneficial effects of chronic low-frequency stimulation of thigh muscles in patients with advanced chronic heart failure. Eur Heart J 2004, 25: 136-143. 10.1016/j.ehj.2003.09.027CrossRefPubMed Nuhr MJ, Pette D, Berger R, Quittan M, Crevenna R, Huelsman M, Wiesinger GF, Moser P, Fialka-Moser V, Pacher R: Beneficial effects of chronic low-frequency stimulation of thigh muscles in patients with advanced chronic heart failure. Eur Heart J 2004, 25: 136-143. 10.1016/j.ehj.2003.09.027CrossRefPubMed
13.
go back to reference Bourjeily-Habr G, Rochester CL, Palermo F, Snyder P, Mohsenin V: Randomised controlled trial of transcutaneous electrical muscle stimulation of the lower extremities in patients with chronic obstructive pulmonary disease. Thorax 2002, 57: 1045-1049. 10.1136/thorax.57.12.1045PubMedCentralCrossRefPubMed Bourjeily-Habr G, Rochester CL, Palermo F, Snyder P, Mohsenin V: Randomised controlled trial of transcutaneous electrical muscle stimulation of the lower extremities in patients with chronic obstructive pulmonary disease. Thorax 2002, 57: 1045-1049. 10.1136/thorax.57.12.1045PubMedCentralCrossRefPubMed
14.
go back to reference Vivodtzev I, Pepin J, Vottero G, Mayer V, Porsin B, Levy P, Wuyam B: Improvement in quadriceps strength and dyspnea in daily tasks after 1 month of electrical stimulation in severely deconditioned and malnourished COPD. Chest 2006, 129: 9.CrossRef Vivodtzev I, Pepin J, Vottero G, Mayer V, Porsin B, Levy P, Wuyam B: Improvement in quadriceps strength and dyspnea in daily tasks after 1 month of electrical stimulation in severely deconditioned and malnourished COPD. Chest 2006, 129: 9.CrossRef
15.
go back to reference Hamada T, Hayashi T, Kimura T, Nakao K, Moritani T: Electrical stimulation of human lower extremities enhances energy consumption, carbohydrate oxidation, and whole body glucose uptake. J Appl Physiol 2004, 96: 911-916.CrossRefPubMed Hamada T, Hayashi T, Kimura T, Nakao K, Moritani T: Electrical stimulation of human lower extremities enhances energy consumption, carbohydrate oxidation, and whole body glucose uptake. J Appl Physiol 2004, 96: 911-916.CrossRefPubMed
16.
go back to reference Kim CK, Bangsbo J, Strange S, Karpakka J, Saltin B: Metabolic response and muscle glycogen depletion pattern during prolonged electrically induced dynamic exercise in man. Scand J Rehabil Med 1995, 27: 51-58.PubMed Kim CK, Bangsbo J, Strange S, Karpakka J, Saltin B: Metabolic response and muscle glycogen depletion pattern during prolonged electrically induced dynamic exercise in man. Scand J Rehabil Med 1995, 27: 51-58.PubMed
17.
go back to reference Banerjee P, Caulfield B, Crowe L, Ingle L, Cleland JGF, Clark AL: Home based exercise training by electrical muscle stimulation in chronic heart failure improves peak V0 2 , exercise time and leg muscle strength. Eur J Heart Fail Suppl 2004, 3: 32.CrossRef Banerjee P, Caulfield B, Crowe L, Ingle L, Cleland JGF, Clark AL: Home based exercise training by electrical muscle stimulation in chronic heart failure improves peak V0 2 , exercise time and leg muscle strength. Eur J Heart Fail Suppl 2004, 3: 32.CrossRef
18.
go back to reference Banerjee P, Clark A, Witte K, Crowe L, Caulfield B: Electrical stimulation of unloaded muscles causes cardiovascular exercise by increasing oxygen demand. Eur J Cardiovasc Prev Rehabil 2005, 12: 503-508. 10.1097/01.hjr.0000169188.84184.23CrossRefPubMed Banerjee P, Clark A, Witte K, Crowe L, Caulfield B: Electrical stimulation of unloaded muscles causes cardiovascular exercise by increasing oxygen demand. Eur J Cardiovasc Prev Rehabil 2005, 12: 503-508. 10.1097/01.hjr.0000169188.84184.23CrossRefPubMed
19.
go back to reference Eijsbouts XH, Hopman MT, Skinner JS: Effect of electrical stimulation of leg muscles on physiological responses during arm-cranking exercise in healthy men. Eur J Appl Physiol Occup Physiol 1997, 75: 177-181. 10.1007/s004210050144CrossRefPubMed Eijsbouts XH, Hopman MT, Skinner JS: Effect of electrical stimulation of leg muscles on physiological responses during arm-cranking exercise in healthy men. Eur J Appl Physiol Occup Physiol 1997, 75: 177-181. 10.1007/s004210050144CrossRefPubMed
20.
go back to reference Russ DW, Elliott MA, Vandenborne K, Walter GA, Binder-Macleod SA: Metabolic costs of isometric force generation and maintenance of human skeletal muscle. Am J Physiol Endocrinol Metab 2002, 282: E448-457.CrossRefPubMed Russ DW, Elliott MA, Vandenborne K, Walter GA, Binder-Macleod SA: Metabolic costs of isometric force generation and maintenance of human skeletal muscle. Am J Physiol Endocrinol Metab 2002, 282: E448-457.CrossRefPubMed
21.
go back to reference Caulfield B, Crowe L, Minogue C, Banerjee P, Clark A: The use of electrical muscle stimulation to elicit a cardiovascular exercise response without joint loading: a case study. J Exercise Physiol Online 2004, 7: 84-88. Caulfield B, Crowe L, Minogue C, Banerjee P, Clark A: The use of electrical muscle stimulation to elicit a cardiovascular exercise response without joint loading: a case study. J Exercise Physiol Online 2004, 7: 84-88.
22.
go back to reference Crognale D, De Vito G, Grosset J, Crowe L, Minogue C, Caulfield B: Neuromuscular electrical stimulation can elicit aerobic exercise response without undue discomfort in healthy physically active adults. J Strength Cond Res 2012, 27: 208-215.CrossRef Crognale D, De Vito G, Grosset J, Crowe L, Minogue C, Caulfield B: Neuromuscular electrical stimulation can elicit aerobic exercise response without undue discomfort in healthy physically active adults. J Strength Cond Res 2012, 27: 208-215.CrossRef
23.
go back to reference Banerjee P, Caulfield B, Crowe L, Clark A: Prolonged electrical muscle stimulation exercise improves strength and aerobic capacity in healthy sedentary adults. J Appl Physiol 2005, 99: 2307-2311. 10.1152/japplphysiol.00891.2004CrossRefPubMed Banerjee P, Caulfield B, Crowe L, Clark A: Prolonged electrical muscle stimulation exercise improves strength and aerobic capacity in healthy sedentary adults. J Appl Physiol 2005, 99: 2307-2311. 10.1152/japplphysiol.00891.2004CrossRefPubMed
24.
go back to reference Crognale D, Crowe L, Devito G, Minogue C, Caulfield B: Neuro-muscular electrical stimulation training enhances maximal aerobic capacity in healthy physically active adults. Conf Proc IEEE Eng Med Biol Soc 2009, 2009: 2137-2140.PubMed Crognale D, Crowe L, Devito G, Minogue C, Caulfield B: Neuro-muscular electrical stimulation training enhances maximal aerobic capacity in healthy physically active adults. Conf Proc IEEE Eng Med Biol Soc 2009, 2009: 2137-2140.PubMed
25.
go back to reference Carty A, McCormack K, Coughlan GF, Crowe L, Caulfield B: Increased aerobic fitness after neuromuscular electrical stimulation training in adults with spinal cord injury. Arch Phys Med Rehabil 2012, 93: 790-795. 10.1016/j.apmr.2011.10.030CrossRefPubMed Carty A, McCormack K, Coughlan GF, Crowe L, Caulfield B: Increased aerobic fitness after neuromuscular electrical stimulation training in adults with spinal cord injury. Arch Phys Med Rehabil 2012, 93: 790-795. 10.1016/j.apmr.2011.10.030CrossRefPubMed
26.
go back to reference Umberger BR, Gerritsen KG, Martin PE: A model of human muscle energy expenditure. Comput Methods Biomech Biomed Engin 2003, 6: 99-111. 10.1080/1025584031000091678CrossRefPubMed Umberger BR, Gerritsen KG, Martin PE: A model of human muscle energy expenditure. Comput Methods Biomech Biomed Engin 2003, 6: 99-111. 10.1080/1025584031000091678CrossRefPubMed
27.
go back to reference Houdijk H, Bobbert MF, de Haan A: Evaluation of a hill based muscle model for the energy cost and efficiency of muscular contraction. J Biomech 2006, 39: 536-543. 10.1016/j.jbiomech.2004.11.033CrossRefPubMed Houdijk H, Bobbert MF, de Haan A: Evaluation of a hill based muscle model for the energy cost and efficiency of muscular contraction. J Biomech 2006, 39: 536-543. 10.1016/j.jbiomech.2004.11.033CrossRefPubMed
28.
go back to reference Hill AV: Heat of shortening and the dynamic constants of muscle. Proc Roy Soc Lond Ser B 1938, 126: 136-195. 10.1098/rspb.1938.0050CrossRef Hill AV: Heat of shortening and the dynamic constants of muscle. Proc Roy Soc Lond Ser B 1938, 126: 136-195. 10.1098/rspb.1938.0050CrossRef
29.
go back to reference Eom GM, Watanabe T, Hoshimiya N, Khang G: Gradual potentiation of isometric muscle force during constant electrical stimulation. Med Biol Eng Comput 2002, 40: 137-143. 10.1007/BF02347707CrossRefPubMed Eom GM, Watanabe T, Hoshimiya N, Khang G: Gradual potentiation of isometric muscle force during constant electrical stimulation. Med Biol Eng Comput 2002, 40: 137-143. 10.1007/BF02347707CrossRefPubMed
30.
go back to reference Wasserman K: Principles of Exercise Testing and Interpretation: including Pathophysiology and Clinical Applications. Lippincott Williams & Wilkins; 2005. Wasserman K: Principles of Exercise Testing and Interpretation: including Pathophysiology and Clinical Applications. Lippincott Williams & Wilkins; 2005.
31.
go back to reference Gregory CM, Bickel CS: Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 2005, 85: 358-364.PubMed Gregory CM, Bickel CS: Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 2005, 85: 358-364.PubMed
32.
go back to reference Feiereisen P, Duchateau J, Hainaut K: Motor unit recruitment order during voluntary and electrically induced contractions in the tibialis anterior. Exp Br Res 1997, 114: 117-123. 10.1007/PL00005610CrossRef Feiereisen P, Duchateau J, Hainaut K: Motor unit recruitment order during voluntary and electrically induced contractions in the tibialis anterior. Exp Br Res 1997, 114: 117-123. 10.1007/PL00005610CrossRef
33.
go back to reference Knaflitz M, Merletti R, De Luca CJ: Inference of motor unit recruitment order in voluntary and electrically elicited contractions. J Appl Physiol 1990, 68: 1657-1667.PubMed Knaflitz M, Merletti R, De Luca CJ: Inference of motor unit recruitment order in voluntary and electrically elicited contractions. J Appl Physiol 1990, 68: 1657-1667.PubMed
34.
go back to reference Vanderthommen M, Duteil S, Wary C, Raynaud JS, Leroy-Willig A, Crielaard JM, Carlier PG: A comparison of voluntary and electrically induced contractions by interleaved 1H- and 31P-NMRS in humans. J Appl Physiol 2003, 94: 1012-1024.CrossRefPubMed Vanderthommen M, Duteil S, Wary C, Raynaud JS, Leroy-Willig A, Crielaard JM, Carlier PG: A comparison of voluntary and electrically induced contractions by interleaved 1H- and 31P-NMRS in humans. J Appl Physiol 2003, 94: 1012-1024.CrossRefPubMed
35.
go back to reference Ratkevicius A, Mizuno M, Povilonis E, Quistorff B: Energy metabolism of the gastrocnemius and soleus muscles during isometric voluntary and electrically induced contractions in man. J Physiol 1998,507(Pt 2):593-602.PubMedCentralCrossRefPubMed Ratkevicius A, Mizuno M, Povilonis E, Quistorff B: Energy metabolism of the gastrocnemius and soleus muscles during isometric voluntary and electrically induced contractions in man. J Physiol 1998,507(Pt 2):593-602.PubMedCentralCrossRefPubMed
36.
go back to reference Richardson D: Blood flow response of human calf muscles to static contractions at various percentages of MVC. J Appl Physiol 1981, 51: 929-933.PubMed Richardson D: Blood flow response of human calf muscles to static contractions at various percentages of MVC. J Appl Physiol 1981, 51: 929-933.PubMed
37.
go back to reference Hultman E, Spriet LL: Skeletal muscle metabolism, contraction force and glycogen utilization during prolonged electrical stimulation in humans. J Physiol 1986, 374: 493-501.PubMedCentralCrossRefPubMed Hultman E, Spriet LL: Skeletal muscle metabolism, contraction force and glycogen utilization during prolonged electrical stimulation in humans. J Physiol 1986, 374: 493-501.PubMedCentralCrossRefPubMed
38.
go back to reference Binder-Macleod SA, Halden EE, Jungles KA: Effects of stimulation intensity on the physiological responses of human motor units. Med Sci Sport Exer 1995, 27: 556-565. Binder-Macleod SA, Halden EE, Jungles KA: Effects of stimulation intensity on the physiological responses of human motor units. Med Sci Sport Exer 1995, 27: 556-565.
39.
go back to reference Foley JM, Meyer RA: Energy cost of twitch and tetanic contractions of rat muscle estimated in situ by gated 31P NMR. NMR Biomed 1993, 6: 32-38. 10.1002/nbm.1940060106CrossRefPubMed Foley JM, Meyer RA: Energy cost of twitch and tetanic contractions of rat muscle estimated in situ by gated 31P NMR. NMR Biomed 1993, 6: 32-38. 10.1002/nbm.1940060106CrossRefPubMed
40.
go back to reference Haman F: Shivering in the cold: from mechanisms of fuel selection to survival. J Appl Physiol 2006, 100: 1702-1708. 10.1152/japplphysiol.01088.2005CrossRefPubMed Haman F: Shivering in the cold: from mechanisms of fuel selection to survival. J Appl Physiol 2006, 100: 1702-1708. 10.1152/japplphysiol.01088.2005CrossRefPubMed
Metadata
Title
Whole body oxygen uptake and evoked knee torque in response to low frequency electrical stimulation of the quadriceps muscles: frequency response to NMES
Authors
Conor M Minogue
Brian M Caulfield
Madeleine M Lowery
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-63

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue