Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Which technique for radiation is most beneficial for patients with locally advanced cervical cancer? Intensity modulated proton therapy versus intensity modulated photon treatment, helical tomotherapy and volumetric arc therapy for primary radiation – an intraindividual comparison

Authors: Simone Marnitz, Waldemar Wlodarczyk, Oliver Neumann, Christhardt Koehler, Mirko Weihrauch, Volker Budach, Luca Cozzi

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Background

To compare highly sophisticated intensity-modulated radiotherapy (IMRT) delivered by either helical tomotherapy (HT), RapidArc (RA), IMRT with protons (IMPT) in patients with locally advanced cervical cancer.

Methods and materials

Twenty cervical cancer patients were irradiated using either conventional IMRT, VMAT or HT; ten received pelvic (PEL) and ten extended field irradiation (EFRT). The dose to the planning-target volume A (PTV_A: cervix, uterus, pelvic ± para-aortic lymph nodes) was 1.8/50.4 Gy. The SIB dose for the parametrium (PTV_B), was 2.12/59.36 Gy. MRI-guided brachytherapy was administered with 5 fractions up to 25 Gy. For EBRT, the lower target constraints were 95% of the prescribed dose in 95% of the target volume. The irradiated small bowel (SB) volumes were kept as low as possible. For every patient, target parameters as well as doses to the organs at risk (SB, bladder, rectum) were evaluated intra-individually for IMRT, HT, VMAT and IMPT.

Results

All techniques provided excellent target volume coverage, homogeneity, conformity. With IMPT, there was a significant reduction of the mean dose (Dmean) of the SB from 30.2 ± 4.0 Gy (IMRT); 27.6 ± 5.6 Gy (HT); 34.1 ± 7.0 (RA) to 18.6 ± 5.9 Gy (IMPT) for pelvic radiation and 26.3 ± 3.2 Gy (IMRT); 24.0 ± 4.1 (HT); 25.3 ± 3.7 (RA) to 13.8 ± 2.8 Gy (IMPT) for patients with EFRT, which corresponds to a reduction of 38-52% for the Dmean (SB). Futhermore, the low dose bath (V10Gy) to the small bowel was reduced by 50% with IMPT in comparison to all photon techniques. Furthermore, Dmean to the bladder and rectum was decresed by 7-9 Gy with IMPT in patents with pelvic radiation and EFRT.

Conclusion

All modern techniques (were proved to be dosimetrically adequate regarding coverage, conformity and homogeneity of the target. Protons offered the best sparing of small bowel and rectum and therefore could contribute to a significant reduction of acute and late toxicity in cervical cancer treatment.
Literature
1.
go back to reference Morris M, Eifel PJ, Lu J, Grgsby P, Levenback C, Stevens R, et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med. 1999;340:1137–43.CrossRefPubMed Morris M, Eifel PJ, Lu J, Grgsby P, Levenback C, Stevens R, et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med. 1999;340:1137–43.CrossRefPubMed
2.
go back to reference Vale C, Tierney JF, Stewart LA, Brady M, Dinshaw K, Jakobsen A, et al. Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: a systematic review and meta-analysis of individual patient data from 18 randomized trials. J Clin Oncol. 2008;26:5802–12.CrossRef Vale C, Tierney JF, Stewart LA, Brady M, Dinshaw K, Jakobsen A, et al. Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: a systematic review and meta-analysis of individual patient data from 18 randomized trials. J Clin Oncol. 2008;26:5802–12.CrossRef
3.
go back to reference Green JA, Kirwan JM, Tierney JF, Symonds L, Collingwood M, Williams C. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. Lancet. 2001;358:781–6.CrossRefPubMed Green JA, Kirwan JM, Tierney JF, Symonds L, Collingwood M, Williams C. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. Lancet. 2001;358:781–6.CrossRefPubMed
4.
go back to reference Kirwan JM, Symonds P, Green JA, Tierney J, Collingwood M, Williams C. A systematic review of acute and late toxicity of concomitant chemoradiation for cervical cancer. Radiother Oncol. 2003;68:217–26.CrossRefPubMed Kirwan JM, Symonds P, Green JA, Tierney J, Collingwood M, Williams C. A systematic review of acute and late toxicity of concomitant chemoradiation for cervical cancer. Radiother Oncol. 2003;68:217–26.CrossRefPubMed
5.
go back to reference Varia MA, Bundy BN, Deppe G, Mannel R, Averette H, Rose P, et al. Cervical carcinoma metastatic to para-aortic nodes: extended field radiation therapy with concomitant 5-fluorouracil and cisplatin chemotherapy: a Gynecologic Oncology Group study. Int J Radiat Oncol Biol Phys. 1998;42:1015–23.CrossRefPubMed Varia MA, Bundy BN, Deppe G, Mannel R, Averette H, Rose P, et al. Cervical carcinoma metastatic to para-aortic nodes: extended field radiation therapy with concomitant 5-fluorouracil and cisplatin chemotherapy: a Gynecologic Oncology Group study. Int J Radiat Oncol Biol Phys. 1998;42:1015–23.CrossRefPubMed
6.
go back to reference Grigsby PW, Lu JD, Mutch DG, Kim R, Eifel P. Twice-daily fractionation of external irradiation with brachytherapy and chemotherapy in carcinoma of the cervix with positive para-aortic lymph nodes: Phase II study of the Radiation Therapy Oncology Group 92–10. Int J Radiat Oncol Biol Phys. 1998;41:817–22.CrossRefPubMed Grigsby PW, Lu JD, Mutch DG, Kim R, Eifel P. Twice-daily fractionation of external irradiation with brachytherapy and chemotherapy in carcinoma of the cervix with positive para-aortic lymph nodes: Phase II study of the Radiation Therapy Oncology Group 92–10. Int J Radiat Oncol Biol Phys. 1998;41:817–22.CrossRefPubMed
7.
go back to reference Small W, Winter K, Levenback C, Iyer R, Gaffney D, Asbell S, et al. Extended-field irradiation and intracavitary brachytherapy combined with cisplatin chemotherapy for cervical cancer with positive para-aortic or high common iliac lymph nodes: results of ARM 1 of RTOG 0116. Int J Radiat Oncol Biol Phys. 2007;68:1081–7.CrossRefPubMed Small W, Winter K, Levenback C, Iyer R, Gaffney D, Asbell S, et al. Extended-field irradiation and intracavitary brachytherapy combined with cisplatin chemotherapy for cervical cancer with positive para-aortic or high common iliac lymph nodes: results of ARM 1 of RTOG 0116. Int J Radiat Oncol Biol Phys. 2007;68:1081–7.CrossRefPubMed
8.
go back to reference Rotman M, Pajak TF, Choi K, Clery M, Marcial V, Grigsby P, et al. Prophylactic extended-field irradiation of para-aortic lymph nodes in stages IIB and bulky IB and IIA cervical carcinomas. Ten-year treatment results of RTOG 79–20. JAMA. 1995;274:387–93.CrossRefPubMed Rotman M, Pajak TF, Choi K, Clery M, Marcial V, Grigsby P, et al. Prophylactic extended-field irradiation of para-aortic lymph nodes in stages IIB and bulky IB and IIA cervical carcinomas. Ten-year treatment results of RTOG 79–20. JAMA. 1995;274:387–93.CrossRefPubMed
9.
go back to reference Portelance L, Chao KS, Grigsby PW, Bennet H, Low D. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys. 2001;51:261–6.CrossRefPubMed Portelance L, Chao KS, Grigsby PW, Bennet H, Low D. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys. 2001;51:261–6.CrossRefPubMed
10.
go back to reference Mundt AJ, Roeske JC, Lujan AE, Yamada S, Waggoner S, Fleming G, et al. Initial clinical experience with intensity-modulated whole-pelvis radiation therapy in women with gynecologic malignancies. Gynecol Oncol. 2001;82:456–63.CrossRefPubMed Mundt AJ, Roeske JC, Lujan AE, Yamada S, Waggoner S, Fleming G, et al. Initial clinical experience with intensity-modulated whole-pelvis radiation therapy in women with gynecologic malignancies. Gynecol Oncol. 2001;82:456–63.CrossRefPubMed
11.
go back to reference Beriwal S, Gan GN, Heron DE, Selvaraj R, Kim H, Lalonde R, et al. Early clinical outcome with concurrent chemotherapy and extended-field, intensity-modulated radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2007;68:166–71.CrossRefPubMed Beriwal S, Gan GN, Heron DE, Selvaraj R, Kim H, Lalonde R, et al. Early clinical outcome with concurrent chemotherapy and extended-field, intensity-modulated radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2007;68:166–71.CrossRefPubMed
12.
go back to reference Kavanagh BD, Pan CC, Dawson LA, Das S, Li X, Ten Haken R, et al. Radiation dose-volume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys. 2010;76:S101–7.CrossRefPubMed Kavanagh BD, Pan CC, Dawson LA, Das S, Li X, Ten Haken R, et al. Radiation dose-volume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys. 2010;76:S101–7.CrossRefPubMed
13.
go back to reference Chen MF, Tseng CJ, Tseng CC, Yu C, Wu C, Chen W. Adjuvant concurrent chemoradiotherapy with intensity-modulated pelvic radiotherapy after surgery for high-risk, early stage cervical cancer patients. Cancer J. 2008;14:200–6.CrossRefPubMed Chen MF, Tseng CJ, Tseng CC, Yu C, Wu C, Chen W. Adjuvant concurrent chemoradiotherapy with intensity-modulated pelvic radiotherapy after surgery for high-risk, early stage cervical cancer patients. Cancer J. 2008;14:200–6.CrossRefPubMed
14.
go back to reference Isohashi F, Yoshioka Y, Mabuchi S, Konishi K, Koizumi M, Takahashi Y, et al. Dose volume histogram predictors of chronic gastrointestinal complications after radical hysterectomy and postoperative concurrent nedaplatin based chemoradiation therapy for early stage cervical cancer. Int J Radiat Oncol Biol Phys. 2013;85:728–34.CrossRefPubMed Isohashi F, Yoshioka Y, Mabuchi S, Konishi K, Koizumi M, Takahashi Y, et al. Dose volume histogram predictors of chronic gastrointestinal complications after radical hysterectomy and postoperative concurrent nedaplatin based chemoradiation therapy for early stage cervical cancer. Int J Radiat Oncol Biol Phys. 2013;85:728–34.CrossRefPubMed
15.
go back to reference Chopra S, Dora T, Chinnachamy A, Thomas B, Kannan S, Engineer R, et al. Predictors of grade 3 or higher late bowel toxicity in patients undergoing pelvic radiation for cervical cancer: results from a prospective study. Int J Radiat Oncol Biol Phys. 2014;88:630–5.CrossRefPubMed Chopra S, Dora T, Chinnachamy A, Thomas B, Kannan S, Engineer R, et al. Predictors of grade 3 or higher late bowel toxicity in patients undergoing pelvic radiation for cervical cancer: results from a prospective study. Int J Radiat Oncol Biol Phys. 2014;88:630–5.CrossRefPubMed
16.
go back to reference Song WY, Huh SN, Liang Y, White G, Nichols R, Watkins W, et al. Dosimetric comparison study between intensity modulated radiation therapy and three-dimensional conformal proton therapy for pelvic bone marrow sparing in the treatment of cervical cancer. J Appl Clin Med Phys. 2010;11:3255.PubMed Song WY, Huh SN, Liang Y, White G, Nichols R, Watkins W, et al. Dosimetric comparison study between intensity modulated radiation therapy and three-dimensional conformal proton therapy for pelvic bone marrow sparing in the treatment of cervical cancer. J Appl Clin Med Phys. 2010;11:3255.PubMed
17.
go back to reference van de Water TA, Lomax AJ, Bijl HP, de Jong M, Schilstra C, Hug E, et al. Potential benefits of scanned intensity-modulated proton therapy versus advanced photon therapy with regard to sparing of the salivary glands in oropharyngeal cancer. Int J Radiat Oncol Biol Phys. 2011;79:1216–24.CrossRefPubMed van de Water TA, Lomax AJ, Bijl HP, de Jong M, Schilstra C, Hug E, et al. Potential benefits of scanned intensity-modulated proton therapy versus advanced photon therapy with regard to sparing of the salivary glands in oropharyngeal cancer. Int J Radiat Oncol Biol Phys. 2011;79:1216–24.CrossRefPubMed
18.
go back to reference Weber DC, Wang H, Cozzi L, Dipasquale G, Khan H, Ratib O, et al. RapidArc, intensity modulated photon and proton techniques for recurrent prostate cancer in previously irradiated patients: a treatment planning comparison study. Radiat Oncol. 2009;4:34.CrossRefPubMedCentralPubMed Weber DC, Wang H, Cozzi L, Dipasquale G, Khan H, Ratib O, et al. RapidArc, intensity modulated photon and proton techniques for recurrent prostate cancer in previously irradiated patients: a treatment planning comparison study. Radiat Oncol. 2009;4:34.CrossRefPubMedCentralPubMed
19.
go back to reference Zhang X, Li Y, Pan X, Xiaogiang L, Mohan R, Komaki R, et al. Intensity-modulated proton therapy reduces the dose to normal tissue compared with intensity-modulated radiation therapy or passive scattering proton therapy and enables individualized radical radiotherapy for extensive stage IIIB non-small-cell lung cancer: a virtual clinical study. Int J Radiat Oncol Biol Phys. 2010;77:357–66.CrossRefPubMedCentralPubMed Zhang X, Li Y, Pan X, Xiaogiang L, Mohan R, Komaki R, et al. Intensity-modulated proton therapy reduces the dose to normal tissue compared with intensity-modulated radiation therapy or passive scattering proton therapy and enables individualized radical radiotherapy for extensive stage IIIB non-small-cell lung cancer: a virtual clinical study. Int J Radiat Oncol Biol Phys. 2010;77:357–66.CrossRefPubMedCentralPubMed
20.
go back to reference Boehling NS, Grosshans DR, Bluett JB, Palmer M, Song X, Amos R, et al. Dosimetric comparison of three-dimensional conformal proton radiotherapy, intensity-modulated proton therapy, and intensity-modulated radiotherapy for treatment of pediatric craniopharyngiomas. Int J Radiat Oncol Biol Phys. 2010;82:643–52.CrossRef Boehling NS, Grosshans DR, Bluett JB, Palmer M, Song X, Amos R, et al. Dosimetric comparison of three-dimensional conformal proton radiotherapy, intensity-modulated proton therapy, and intensity-modulated radiotherapy for treatment of pediatric craniopharyngiomas. Int J Radiat Oncol Biol Phys. 2010;82:643–52.CrossRef
21.
go back to reference Georg D, Georg P, Hillbrand M, Poetter R, Mock U. Assessment of improved organ at risk sparing for advanced cervix carcinoma utilizing precision radiotherapy techniques. Strahlenther Onkol. 2008;184:586–91.CrossRefPubMed Georg D, Georg P, Hillbrand M, Poetter R, Mock U. Assessment of improved organ at risk sparing for advanced cervix carcinoma utilizing precision radiotherapy techniques. Strahlenther Onkol. 2008;184:586–91.CrossRefPubMed
22.
go back to reference Milby AB, Both S, Ingram M, Lin L. Dosimetric comparison of combined intensity-modulated radiotherapy (IMRT) and proton therapy versus IMRT alone for pelvic and para-aortic radiotherapy in gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2010;82:e477–84.CrossRef Milby AB, Both S, Ingram M, Lin L. Dosimetric comparison of combined intensity-modulated radiotherapy (IMRT) and proton therapy versus IMRT alone for pelvic and para-aortic radiotherapy in gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2010;82:e477–84.CrossRef
23.
go back to reference Kagei K, Tokuuye K, Okumura T, Ohara K, Shioyama Y, Sugahara S, et al. Long-term results of proton beam therapy for carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 2003;55:1265–71.CrossRefPubMed Kagei K, Tokuuye K, Okumura T, Ohara K, Shioyama Y, Sugahara S, et al. Long-term results of proton beam therapy for carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 2003;55:1265–71.CrossRefPubMed
24.
go back to reference Small W, Mell L, Anderson P, Creutzberg C, De Los Santos J, Gaffney D, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71:428–34.CrossRefPubMedCentralPubMed Small W, Mell L, Anderson P, Creutzberg C, De Los Santos J, Gaffney D, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71:428–34.CrossRefPubMedCentralPubMed
25.
go back to reference Japan Clinical Oncology Group, Toita T, Ohno T, Kaneyasu Y, Uno T, Yoshimura R, et al. A consensus-based guideline defining the clinical target volume for pelvic lymph nodes in external beam radiotherapy for uterine cervical cancer. Jpn J Clin Oncol. 2010;40:456–63.CrossRef Japan Clinical Oncology Group, Toita T, Ohno T, Kaneyasu Y, Uno T, Yoshimura R, et al. A consensus-based guideline defining the clinical target volume for pelvic lymph nodes in external beam radiotherapy for uterine cervical cancer. Jpn J Clin Oncol. 2010;40:456–63.CrossRef
26.
go back to reference Gillin MT, Sahoo N, Bues M, Ciangaru G, Poenisch F, Arjomandy B, et al. Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston. Med Phys. 2010;37:154–63.CrossRefPubMed Gillin MT, Sahoo N, Bues M, Ciangaru G, Poenisch F, Arjomandy B, et al. Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston. Med Phys. 2010;37:154–63.CrossRefPubMed
27.
go back to reference Arjomandy B, Sahoo N, Ciangaru G, Zhu R, Song X, Gillin M. Verification of patient-specific dose distributions in proton therapy using a commercial two-dimensional ion chamber array. Med Phys. 2010;37:5831–7.CrossRefPubMed Arjomandy B, Sahoo N, Ciangaru G, Zhu R, Song X, Gillin M. Verification of patient-specific dose distributions in proton therapy using a commercial two-dimensional ion chamber array. Med Phys. 2010;37:5831–7.CrossRefPubMed
28.
go back to reference Feuvret L, Noel G, Mazeron JJ, Bey P. Conformity index: a review. Int J Radiat Oncol Biol Phys. 2006;64:333–42.CrossRefPubMed Feuvret L, Noel G, Mazeron JJ, Bey P. Conformity index: a review. Int J Radiat Oncol Biol Phys. 2006;64:333–42.CrossRefPubMed
29.
go back to reference Mayo CS, Urie MM. A systematic benchmark method for analysis and comparison of IMRT treatment planning algorithms. Med Dosim. 2003;28:235–42.CrossRefPubMed Mayo CS, Urie MM. A systematic benchmark method for analysis and comparison of IMRT treatment planning algorithms. Med Dosim. 2003;28:235–42.CrossRefPubMed
30.
go back to reference Mock U, Bogner J, Georg D, Auberger T, Potter R. Comparative treatment planning on localized prostate carcinoma conformal photon- versus proton-based radiotherapy. Strahlenther Onkol. 2005;181:448–55.CrossRefPubMed Mock U, Bogner J, Georg D, Auberger T, Potter R. Comparative treatment planning on localized prostate carcinoma conformal photon- versus proton-based radiotherapy. Strahlenther Onkol. 2005;181:448–55.CrossRefPubMed
31.
go back to reference Clivio A, Kluge A, Cozzi L, Koehler C, Neumann O, Vanetti E, et al. Intensity modulated proton beam radiation for brachytherapy in patients with cervical carcinoma. Int J Radiat Oncol Biol Phys. 2013;87:897–903.CrossRefPubMed Clivio A, Kluge A, Cozzi L, Koehler C, Neumann O, Vanetti E, et al. Intensity modulated proton beam radiation for brachytherapy in patients with cervical carcinoma. Int J Radiat Oncol Biol Phys. 2013;87:897–903.CrossRefPubMed
32.
go back to reference Georg P, Poetter R, Georg D, Lang S, Dimopoulos J, Sturdza A, et al. Dose effect relationship for late side effects of the rectum and urinary bladder in magnetic resonance image-guided adaptive cervix cancer brachytherapy. Int J Radiat Oncol Biol Phys. 2010;82:653–7.CrossRef Georg P, Poetter R, Georg D, Lang S, Dimopoulos J, Sturdza A, et al. Dose effect relationship for late side effects of the rectum and urinary bladder in magnetic resonance image-guided adaptive cervix cancer brachytherapy. Int J Radiat Oncol Biol Phys. 2010;82:653–7.CrossRef
33.
go back to reference Dawson L, Kavanagh B, Paulino A, Shiva D, Miften M, Li A, et al. Radiation associated kidney injury. Int J Radiat Oncol Biol Phys. 2010;76:S108–15.CrossRefPubMed Dawson L, Kavanagh B, Paulino A, Shiva D, Miften M, Li A, et al. Radiation associated kidney injury. Int J Radiat Oncol Biol Phys. 2010;76:S108–15.CrossRefPubMed
Metadata
Title
Which technique for radiation is most beneficial for patients with locally advanced cervical cancer? Intensity modulated proton therapy versus intensity modulated photon treatment, helical tomotherapy and volumetric arc therapy for primary radiation – an intraindividual comparison
Authors
Simone Marnitz
Waldemar Wlodarczyk
Oliver Neumann
Christhardt Koehler
Mirko Weihrauch
Volker Budach
Luca Cozzi
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0402-z

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue