Skip to main content
Top
Published in: CardioVascular and Interventional Radiology 12/2018

Open Access 01-12-2018 | Clinical Investigation

Where is the Origin of the Last Normal Branch from Feeding Artery of Pulmonary Arteriovenous Malformations?

Authors: Miyuki Maruno, Hiro Kiyosue, Norio Hongo, Shunro Matsumoto, Hiromu Mori

Published in: CardioVascular and Interventional Radiology | Issue 12/2018

Login to get access

Abstract

Purpose

Reperfusion via pulmonary-to-pulmonary arterial anastomoses is known as one type of recurrence of pulmonary arteriovenous malformations (PAVMs) after embolization. It is important to occlude the fistulous portion beyond the origin of the last normal branch from feeding artery of PAVMs to prevent recurrence. In this study, we evaluate the origin of the last normal branch by CT as well as its visibility on pulmonary arteriography (PAG).

Materials and Methods

We reviewed forty patients with 77 PAVMs who underwent coil embolization between October 2007 and December 2017. All patients underwent MDCT before embolization. Axial and MPR CT lung images were reviewed with special interests in the origin of the last normal branch from feeding artery of PAVMs. The origin was classified into three portions, including sac, junction (portion just proximal to the sac) and proximal feeder (more than 5 mm proximal to the sac). We also evaluated whether PAG can depict the normal branches detected by MDCT.

Results

MDCT showed that the last normal branch originated from sac in 30 PAVMs (39.0%), junction in 39 (50.6%), and proximal feeder in 8 (10.4%).On selective PAG, the last normal branch could be visualized in 30 PAVMs (39.0%), although it could not be visualized due to high-flow shunt in the other 47 PAVMs.

Conclusions

Selective PAG frequently fails to demonstrate the last normal branch from feeding artery of PAVMs, which often originates from the sac. Pretherapeutic evaluation of CT images of the last normal branch is important to prevent reperfusion of PAVMs.

Level of Evidence

Level 3, local non-random sample.
Literature
1.
go back to reference White RI Jr, Lynch-Nyhan A, Terry P, et al. Pulmonary arteriovenous malformations: techniques and long-term outcome of embolotherapy. Radiology. 1988;169:663–9.CrossRef White RI Jr, Lynch-Nyhan A, Terry P, et al. Pulmonary arteriovenous malformations: techniques and long-term outcome of embolotherapy. Radiology. 1988;169:663–9.CrossRef
2.
go back to reference Ference BA, Shannon TM, White RI Jr, et al. Life-threatening pulmonary hemorrhage with pulmonary arteriovenous malformations and hereditary hemorrhagic telangiectasia. Chest. 1994;106:1387–90.CrossRef Ference BA, Shannon TM, White RI Jr, et al. Life-threatening pulmonary hemorrhage with pulmonary arteriovenous malformations and hereditary hemorrhagic telangiectasia. Chest. 1994;106:1387–90.CrossRef
3.
go back to reference Swanson KL, Prakash UB, Stanson AW. Pulmonary arteriovenous fistulas: Mayo Clinic experience, 1982–1997. Mayo Clin Proc. 1999;74:671–80.CrossRef Swanson KL, Prakash UB, Stanson AW. Pulmonary arteriovenous fistulas: Mayo Clinic experience, 1982–1997. Mayo Clin Proc. 1999;74:671–80.CrossRef
4.
go back to reference White RI Jr, Pollak JS, Wirth JA. Pulmonary arteriovenous malformations: diagnosis and transcatheter embolotherapy. J Vasc Interv Radiol. 1996;7:787–804.CrossRef White RI Jr, Pollak JS, Wirth JA. Pulmonary arteriovenous malformations: diagnosis and transcatheter embolotherapy. J Vasc Interv Radiol. 1996;7:787–804.CrossRef
5.
go back to reference Lee DW, White RI Jr, Egglin TK, et al. Embolotherapy of large pulmonary arteriovenous malformations: long-term results. Ann Thorac Surg. 1997;64:930–40.CrossRef Lee DW, White RI Jr, Egglin TK, et al. Embolotherapy of large pulmonary arteriovenous malformations: long-term results. Ann Thorac Surg. 1997;64:930–40.CrossRef
6.
go back to reference Mager JJ, Overtoom TT, Blauw H, et al. Embolotherapy of pulmonary arteriovenous malformations: long-term results in 112 patients. J Vasc Interv Radiol. 2004;15:451–6.CrossRef Mager JJ, Overtoom TT, Blauw H, et al. Embolotherapy of pulmonary arteriovenous malformations: long-term results in 112 patients. J Vasc Interv Radiol. 2004;15:451–6.CrossRef
7.
go back to reference Prasad V, Chan RP, Faughnan ME. Embolotherapy of pulmonary arteriovenous malformations: efficacy of platinum versus stainless steel coils. J Vasc Interv Radiol. 2004;15:153–60.CrossRef Prasad V, Chan RP, Faughnan ME. Embolotherapy of pulmonary arteriovenous malformations: efficacy of platinum versus stainless steel coils. J Vasc Interv Radiol. 2004;15:153–60.CrossRef
8.
go back to reference Makimoto S, Hiraki T, Gobara H, et al. Association between reperfusion and shrinkage percentage of the aneurysmal sac after embolization of pulmonary arteriovenous malformation: evaluation based on contrast-enhanced thin-section CT images. Jpn J Radiol. 2014;32:266–73.CrossRef Makimoto S, Hiraki T, Gobara H, et al. Association between reperfusion and shrinkage percentage of the aneurysmal sac after embolization of pulmonary arteriovenous malformation: evaluation based on contrast-enhanced thin-section CT images. Jpn J Radiol. 2014;32:266–73.CrossRef
9.
go back to reference Milic A, Chan RP, Cohen JH, Faughnan ME. Reperfusion of pulmonary arteriovenous malformations after embolotherapy. J Vasc Interv Radiol. 2005;16:1675–83.CrossRef Milic A, Chan RP, Cohen JH, Faughnan ME. Reperfusion of pulmonary arteriovenous malformations after embolotherapy. J Vasc Interv Radiol. 2005;16:1675–83.CrossRef
10.
go back to reference Woodward CS, Pyeritz RE, Chittams JL, Trerotola SO. Treated pulmonary arteriovenous malformations: patterns of persistence and associated retreatment success. Radiology. 2013;269:919–26.CrossRef Woodward CS, Pyeritz RE, Chittams JL, Trerotola SO. Treated pulmonary arteriovenous malformations: patterns of persistence and associated retreatment success. Radiology. 2013;269:919–26.CrossRef
11.
go back to reference Sagara K, Miyazono N, Inoue H, et al. Recanalization after coil embolotherapy of pulmonary arteriovenous malformations: study of long-term outcome and mechanism for recanalization. Am J Roentgenol. 1998;170:727–30.CrossRef Sagara K, Miyazono N, Inoue H, et al. Recanalization after coil embolotherapy of pulmonary arteriovenous malformations: study of long-term outcome and mechanism for recanalization. Am J Roentgenol. 1998;170:727–30.CrossRef
12.
go back to reference Shovlin CL, Guttmacher AE, Buscarini E, et al. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu–Osler–Weber syndrome). Am J Med Genet. 2000;91:66–7.CrossRef Shovlin CL, Guttmacher AE, Buscarini E, et al. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu–Osler–Weber syndrome). Am J Med Genet. 2000;91:66–7.CrossRef
13.
go back to reference Shimohira M, Kawai T, Hashizume T, et al. Reperfusion rates of pulmonary arteriovenous malformations after coil embolization: evaluation with time-resolved MR angiography or pulmonary angiography. J Vasc Interv Radiol. 2015;26:856–64.CrossRef Shimohira M, Kawai T, Hashizume T, et al. Reperfusion rates of pulmonary arteriovenous malformations after coil embolization: evaluation with time-resolved MR angiography or pulmonary angiography. J Vasc Interv Radiol. 2015;26:856–64.CrossRef
14.
go back to reference Letourneau-Guillon L, Faughnan ME, Soulez G, et al. Embolization of pulmonary arteriovenous malformations with amplatzer vascular plugs: safety and midterm effectiveness. J Vasc Interv Radiol. 2010;21:649–56.CrossRef Letourneau-Guillon L, Faughnan ME, Soulez G, et al. Embolization of pulmonary arteriovenous malformations with amplatzer vascular plugs: safety and midterm effectiveness. J Vasc Interv Radiol. 2010;21:649–56.CrossRef
15.
go back to reference Dinkel HP, Triller J. Pulmonary arteriovenous malformations: embolotherapy with superselective coaxial catheter placement and filling of venous sac with Guglielmi detachable coils. Radiology. 2002;223:709–14.CrossRef Dinkel HP, Triller J. Pulmonary arteriovenous malformations: embolotherapy with superselective coaxial catheter placement and filling of venous sac with Guglielmi detachable coils. Radiology. 2002;223:709–14.CrossRef
16.
go back to reference Hayashi S, Baba Y, Senokuchi T, Nakajo M. Efficacy of venous sac embolization for pulmonary arteriovenous malformations: comparison with feeding artery embolization. J Vasc Interv Radiol. 2012;23:1566–77.CrossRef Hayashi S, Baba Y, Senokuchi T, Nakajo M. Efficacy of venous sac embolization for pulmonary arteriovenous malformations: comparison with feeding artery embolization. J Vasc Interv Radiol. 2012;23:1566–77.CrossRef
17.
go back to reference Kajiwara K, Urashima M, Yamagami T, et al. Venous sac embolization of pulmonary arteriovenous malformation: safety and effectiveness at mid-term follow-up. Acta Radiol. 2014;55:1093–8.CrossRef Kajiwara K, Urashima M, Yamagami T, et al. Venous sac embolization of pulmonary arteriovenous malformation: safety and effectiveness at mid-term follow-up. Acta Radiol. 2014;55:1093–8.CrossRef
Metadata
Title
Where is the Origin of the Last Normal Branch from Feeding Artery of Pulmonary Arteriovenous Malformations?
Authors
Miyuki Maruno
Hiro Kiyosue
Norio Hongo
Shunro Matsumoto
Hiromu Mori
Publication date
01-12-2018
Publisher
Springer US
Published in
CardioVascular and Interventional Radiology / Issue 12/2018
Print ISSN: 0174-1551
Electronic ISSN: 1432-086X
DOI
https://doi.org/10.1007/s00270-018-2063-4

Other articles of this Issue 12/2018

CardioVascular and Interventional Radiology 12/2018 Go to the issue