Skip to main content
Top
Published in: Clinical Orthopaedics and Related Research® 5/2017

01-05-2017 | Basic Research

What Are the Biomechanical Properties of the Taylor Spatial Frame™?

Authors: Daniel J. Henderson, FRCS (Orth), Jeremy L. Rushbrook, FRCS (Orth), Paul J. Harwood, FRCS (Orth), Todd D. Stewart, PhD

Published in: Clinical Orthopaedics and Related Research® | Issue 5/2017

Login to get access

Abstract

Background

The Taylor Spatial Frame™ (TSF) is a versatile variant of the traditional Ilizarov circular fixator. Although in widespread use, little comparative data exist to quantify the biomechanical effect of substituting the tried-and-tested Ilizarov construct for the TSF hexapod system.

Questions/purposes

This study was designed to investigate the mechanical properties of the TSF system under physiologic loads, with and without the addition of a simulated bone model, with comparison to the standard Ilizarov frame.

Methods

The mechanical behaviors of three identical four-ring TSF and Ilizarov constructs were tested under levels of axial compression, bending, and rotational torque to simulate loading during normal gait. An acrylic-pipe fracture model subsequently was mounted, using fine wires and 5 mm half pins, and the testing was repeated. Load-deformation curves, and so rigidity, for each construct were calculated, with statistical comparisons performed using paired t-tests.

Results

Under axial loading, the TSF was found to be less rigid than the Ilizarov frame (645 ± 57 N/mm versus 1269 ± 256 N/mm; mean difference, 623 N/mm; 95% CI, 438.3–808.5 N/mm; p < 0.001), but more rigid under bending and torsional loads (bending: 42 ± 9 Nm/degree versus 78 ± 13 Nm/degree; mean difference, 37 Nm/degree; 95% CI, 25.0–47.9 Nm/degree; p < 0.001; torsion: 16 ± 2 Nm/degree versus 5 ± 0.35 Nm/degree; mean difference, 11 Nm/degree; 95% CI, 9.5–12.2 Nm/degree; p < 0.001). On mounting the bone models, these relationships broadly remained in the half-pin and fine-wire groups, however the half-pin constructs were universally more rigid than those using fine wires. This effect resulted in the TSF, using half pins, showing no difference in axial rigidity to the fine-wire Ilizarov (107 ± 3 N/mm versus 107 ± 4 N/mm; mean difference, 0.05 N/mm; 95% CI, −6.99 to 7.1 N/mm; p > 0.999), while retaining greater bending and torsional rigidity. Throughout testing, a small amount of laxity was observed in the TSF construct on either side of neutral loading, amounting to 0.72 mm (±0.37 mm) for a change in loading between −10 N and 10 N axial load, and which persisted with the addition of the synthetic fracture model.

Conclusions

This study broadly shows the TSF construct to generate lower axial rigidity, but greater bending and torsional rigidity, when compared with the Ilizarov frame, under physiologic loads. The anecdotally described laxity in the TSF hexapod strut system was shown in vitro, but only at low levels of loading around neutral. It also was shown that the increased stiffness generated by use of half pins produced a TSF construct replicating the axial rigidity of a fine-wire Ilizarov frame, for which much evidence of good clinical and radiologic outcomes exist, while providing greater rigidity and so improved resistance to potentially detrimental bending and rotational shear loads.

Clinical Relevance

If replicated in the clinical setting, these findings suggest that when using the TSF, care should be taken to minimize the observed laxity around neutral with appropriate preloading of the construct, but that its use may produce constructs better able to resist bending and torsional loading, although with lower axial rigidity. Use of half pins in a TSF construct however may replicate the axial mechanical behavior of an Ilizarov construct, which is thought to be conducive to bone healing.
Literature
1.
go back to reference Al-Sayyad MJ. Taylor Spatial Frame in the treatment of pediatric and adolescent tibial shaft fractures. J Pediatr Orthop. 2006;26:164–170.CrossRefPubMed Al-Sayyad MJ. Taylor Spatial Frame in the treatment of pediatric and adolescent tibial shaft fractures. J Pediatr Orthop. 2006;26:164–170.CrossRefPubMed
2.
go back to reference Antoci V, Voor MJ, Antoci V Jr, Roberts CS. Biomechanics of olive wire positioning and tensioning characteristics. J Pediatr Orthop. 2005;25:798–803.CrossRefPubMed Antoci V, Voor MJ, Antoci V Jr, Roberts CS. Biomechanics of olive wire positioning and tensioning characteristics. J Pediatr Orthop. 2005;25:798–803.CrossRefPubMed
3.
go back to reference Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res. 2003;21:1011–1017.CrossRefPubMed Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res. 2003;21:1011–1017.CrossRefPubMed
4.
go back to reference Binski JC. Taylor Spatial Frame in acute fracture care. Tech Orthop. 2002;17:173–184.CrossRef Binski JC. Taylor Spatial Frame in acute fracture care. Tech Orthop. 2002;17:173–184.CrossRef
5.
go back to reference Board TN, Yang L, Saleh M. Why fine-wire fixators work: an analysis of pressure distribution at the wire-bone interface. J Biomech. 2007;40:20–25.CrossRefPubMed Board TN, Yang L, Saleh M. Why fine-wire fixators work: an analysis of pressure distribution at the wire-bone interface. J Biomech. 2007;40:20–25.CrossRefPubMed
6.
go back to reference Calhoun JH, Li F, Ledbetter BR, Gill CA. Biomechanics of the Ilizarov fixator for fracture fixation. Clin Orthop Relat Res. 1992;280:15–22. Calhoun JH, Li F, Ledbetter BR, Gill CA. Biomechanics of the Ilizarov fixator for fracture fixation. Clin Orthop Relat Res. 1992;280:15–22.
7.
go back to reference de Winter JC. Using the Student’s t-test with extremely small sample sizes. Pract Assess Res Eval. 2013;18:1–12. de Winter JC. Using the Student’s t-test with extremely small sample sizes. Pract Assess Res Eval. 2013;18:1–12.
8.
go back to reference Duda GN, Sollmann M, Sporrer S, Hoffmann JE, Kassi JP, Khodadadyan C, Raschke M. Interfragmentary motion in tibial osteotomies stabilized with ring fixators. Clin Orthop Relat Res. 2002;396:163–172.CrossRef Duda GN, Sollmann M, Sporrer S, Hoffmann JE, Kassi JP, Khodadadyan C, Raschke M. Interfragmentary motion in tibial osteotomies stabilized with ring fixators. Clin Orthop Relat Res. 2002;396:163–172.CrossRef
9.
go back to reference Eidelman M, Katzman A. Treatment of complex tibial fractures in children with the taylor spatial frame. Orthopedics. 2008;31: pii: orthosupersite.com/view.asp?rID=31513. Eidelman M, Katzman A. Treatment of complex tibial fractures in children with the taylor spatial frame. Orthopedics. 2008;31: pii: orthosupersite.com/view.asp?rID=31513.
10.
go back to reference Epari DR, Duda GN, Thompson MS. Mechanobiology of bone healing and regeneration: in vivo models. Proc Inst Mech Eng H. 2010;224:1543–1553.CrossRefPubMed Epari DR, Duda GN, Thompson MS. Mechanobiology of bone healing and regeneration: in vivo models. Proc Inst Mech Eng H. 2010;224:1543–1553.CrossRefPubMed
11.
go back to reference Fleming B, Paley D, Kristiansen T, Pope M. A biomechanical analysis of the Ilizarov external fixator. Clin Orthop Relat Res. 1989;241:95–105. Fleming B, Paley D, Kristiansen T, Pope M. A biomechanical analysis of the Ilizarov external fixator. Clin Orthop Relat Res. 1989;241:95–105.
12.
go back to reference Foster PA, Barton SB, Jones SC, Morrison RJ, Britten S. The treatment of complex tibial shaft fractures by the Ilizarov method. J Bone Joint Surg Br. 2012;94:1678–1683.CrossRefPubMed Foster PA, Barton SB, Jones SC, Morrison RJ, Britten S. The treatment of complex tibial shaft fractures by the Ilizarov method. J Bone Joint Surg Br. 2012;94:1678–1683.CrossRefPubMed
13.
go back to reference Gardner MJ, Putnam SM, Wong A, Streubel PN, Kotiya A, Silva MJ. Differential fracture healing resulting from fixation stiffness variability: a mouse model. J Orthop Sci. 2011;16:298–303.CrossRefPubMedPubMedCentral Gardner MJ, Putnam SM, Wong A, Streubel PN, Kotiya A, Silva MJ. Differential fracture healing resulting from fixation stiffness variability: a mouse model. J Orthop Sci. 2011;16:298–303.CrossRefPubMedPubMedCentral
14.
go back to reference Gasser B, Boman B, Wyder D, Schneider E. Stiffness characteristics of the circular Ilizarov device as opposed to conventional external fixators. J Biomech Eng. 1990;112:15–21.CrossRefPubMed Gasser B, Boman B, Wyder D, Schneider E. Stiffness characteristics of the circular Ilizarov device as opposed to conventional external fixators. J Biomech Eng. 1990;112:15–21.CrossRefPubMed
15.
go back to reference Gessmann J, Citak M, Jettkant B, Schildhauer TA, Seybold D. The influence of a weight-bearing platform on the mechanical behavior of two Ilizarov ring fixators: tensioned wires vs. half-pins. J Orthop Surg Res. 2011;6:61. Gessmann J, Citak M, Jettkant B, Schildhauer TA, Seybold D. The influence of a weight-bearing platform on the mechanical behavior of two Ilizarov ring fixators: tensioned wires vs. half-pins. J Orthop Surg Res. 2011;6:61.
16.
go back to reference Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(suppl 4):S3–S6.CrossRef Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(suppl 4):S3–S6.CrossRef
17.
go back to reference Goodship AE, Watkins PE, Rigby HS, Kenwright J. The role of fixator frame stiffness in the control of fracture healing: an experimental study. J Biomech. 1993;26:1027–1035.CrossRefPubMed Goodship AE, Watkins PE, Rigby HS, Kenwright J. The role of fixator frame stiffness in the control of fracture healing: an experimental study. J Biomech. 1993;26:1027–1035.CrossRefPubMed
18.
go back to reference Harwood PJ, Stewart TD. Mechanics of musculoskeletal repair devices. Orthop Trauma. 2016;30:192–200.CrossRef Harwood PJ, Stewart TD. Mechanics of musculoskeletal repair devices. Orthop Trauma. 2016;30:192–200.CrossRef
19.
go back to reference Henderson DJ, Barron E, Hadland Y, Sharma HK. Functional outcomes after tibial shaft fractures treated using the taylor spatial frame. J Orthop Trauma. 2015;29:e54–59.CrossRefPubMed Henderson DJ, Barron E, Hadland Y, Sharma HK. Functional outcomes after tibial shaft fractures treated using the taylor spatial frame. J Orthop Trauma. 2015;29:e54–59.CrossRefPubMed
20.
go back to reference Henderson DJ, Rushbrook JL, Stewart TD, Harwood PJ. What are the biomechanical effects of half-pin and fine-wire configurations on fracture site movement in circular frames? Clin Orthop Relat Res. 2016;474:1041–1049.CrossRefPubMed Henderson DJ, Rushbrook JL, Stewart TD, Harwood PJ. What are the biomechanical effects of half-pin and fine-wire configurations on fracture site movement in circular frames? Clin Orthop Relat Res. 2016;474:1041–1049.CrossRefPubMed
21.
go back to reference Henderson ER, Feldman DS, Lusk C, van Bosse HJ, Sala D, Kummer FJ. Conformational instability of the taylor spatial frame: a case report and biomechanical study. J Pediatr Orthop. 2008;28:471–477.CrossRefPubMed Henderson ER, Feldman DS, Lusk C, van Bosse HJ, Sala D, Kummer FJ. Conformational instability of the taylor spatial frame: a case report and biomechanical study. J Pediatr Orthop. 2008;28:471–477.CrossRefPubMed
22.
go back to reference Kenwright J, Goodship AE. Controlled mechanical stimulation in the treatment of tibial fractures. Clin Orthop Relat Res. 1989;241:36–47. Kenwright J, Goodship AE. Controlled mechanical stimulation in the treatment of tibial fractures. Clin Orthop Relat Res. 1989;241:36–47.
23.
go back to reference Kummer FJ. Biomechanics of the Ilizarov external fixator. Clin Orthop Relat Res. 1992;280:11–14. Kummer FJ. Biomechanics of the Ilizarov external fixator. Clin Orthop Relat Res. 1992;280:11–14.
24.
go back to reference Lenarz C, Bledsoe G, Watson JT. Circular external fixation frames with divergent half pins: a pilot biomechanical study. Clin Orthop Relat Res. 2008;466:2933–2939.CrossRefPubMedPubMedCentral Lenarz C, Bledsoe G, Watson JT. Circular external fixation frames with divergent half pins: a pilot biomechanical study. Clin Orthop Relat Res. 2008;466:2933–2939.CrossRefPubMedPubMedCentral
25.
go back to reference Lewis DD, Bronson DG, Cross AR, Welch RD, Kubilis PS. Axial characteristics of circular external skeletal fixator single ring constructs. Vet Surg. 2001;30:386–394.CrossRefPubMed Lewis DD, Bronson DG, Cross AR, Welch RD, Kubilis PS. Axial characteristics of circular external skeletal fixator single ring constructs. Vet Surg. 2001;30:386–394.CrossRefPubMed
27.
go back to reference Orbay GL, Frankel VH, Kummer FJ. The effect of wire configuration on the stability of the Ilizarov external fixator. Clin Orthop Relat Res. 1992;279:299–302. Orbay GL, Frankel VH, Kummer FJ. The effect of wire configuration on the stability of the Ilizarov external fixator. Clin Orthop Relat Res. 1992;279:299–302.
28.
go back to reference Paley D, Fleming B, Catagni M, Kristiansen T, Pope M. Mechanical evaluation of external fixators used in limb lengthening. Clin Orthop Relat Res. 1990;250:50–57. Paley D, Fleming B, Catagni M, Kristiansen T, Pope M. Mechanical evaluation of external fixators used in limb lengthening. Clin Orthop Relat Res. 1990;250:50–57.
29.
go back to reference Park SH, O’Connor K, McKellop H, Sarmiento A. The influence of active shear or compressive motion on fracture-healing. J Bone Joint Surg Am. 1998;80:868–878.CrossRefPubMed Park SH, O’Connor K, McKellop H, Sarmiento A. The influence of active shear or compressive motion on fracture-healing. J Bone Joint Surg Am. 1998;80:868–878.CrossRefPubMed
30.
go back to reference Pugh KJ, Wolinsky PR, Pienkowski D, Banit D, Dawson JM. Comparative biomechanics of hybrid external fixation. J Orthop Trauma. 1999;13:418–425.CrossRefPubMed Pugh KJ, Wolinsky PR, Pienkowski D, Banit D, Dawson JM. Comparative biomechanics of hybrid external fixation. J Orthop Trauma. 1999;13:418–425.CrossRefPubMed
31.
go back to reference Sarpel Y, Gulsen M, Togrul E, Capa M, Herdem M. Comparison of mechanical performance among different frame configurations of the Ilizarov external fixator: experimental study. J Trauma. 2005;58:546–552.CrossRefPubMed Sarpel Y, Gulsen M, Togrul E, Capa M, Herdem M. Comparison of mechanical performance among different frame configurations of the Ilizarov external fixator: experimental study. J Trauma. 2005;58:546–552.CrossRefPubMed
32.
go back to reference Seide K, Weinrich N, Wenzl ME, Wolter D, Jurgens C. Three-dimensional load measurements in an external fixator. J Biomech. 2004;37:1361–1369.CrossRefPubMed Seide K, Weinrich N, Wenzl ME, Wolter D, Jurgens C. Three-dimensional load measurements in an external fixator. J Biomech. 2004;37:1361–1369.CrossRefPubMed
33.
go back to reference Spiegelberg B, Parratt T, Dheerendra SK, Khan WS, Jennings R, Marsh DR. Ilizarov principles of deformity correction. Ann R Coll Surg Engl. 2010;92:101–105.CrossRefPubMedPubMedCentral Spiegelberg B, Parratt T, Dheerendra SK, Khan WS, Jennings R, Marsh DR. Ilizarov principles of deformity correction. Ann R Coll Surg Engl. 2010;92:101–105.CrossRefPubMedPubMedCentral
34.
go back to reference Steck R, Ueno M, Gregory L, Rijken N, Wullschleger ME, Itoman M, Schuetz MA. Influence of internal fixator flexibility on murine fracture healing as characterized by mechanical testing and microCT imaging. J Orthop Res. 2011;29:1245–1250.CrossRefPubMed Steck R, Ueno M, Gregory L, Rijken N, Wullschleger ME, Itoman M, Schuetz MA. Influence of internal fixator flexibility on murine fracture healing as characterized by mechanical testing and microCT imaging. J Orthop Res. 2011;29:1245–1250.CrossRefPubMed
36.
go back to reference Ulstrup AK. Biomechanical concepts of fracture healing in weight-bearing long bones. Acta Orthop Belg. 2008;74:291–302.PubMed Ulstrup AK. Biomechanical concepts of fracture healing in weight-bearing long bones. Acta Orthop Belg. 2008;74:291–302.PubMed
37.
go back to reference Yang L, Nayagam S, Saleh M. Stiffness characteristics and inter-fragmentary displacements with different hybrid external fixators. Clin Biomech (Bristol, Avon). 2003;18:166–172.CrossRef Yang L, Nayagam S, Saleh M. Stiffness characteristics and inter-fragmentary displacements with different hybrid external fixators. Clin Biomech (Bristol, Avon). 2003;18:166–172.CrossRef
Metadata
Title
What Are the Biomechanical Properties of the Taylor Spatial Frame™?
Authors
Daniel J. Henderson, FRCS (Orth)
Jeremy L. Rushbrook, FRCS (Orth)
Paul J. Harwood, FRCS (Orth)
Todd D. Stewart, PhD
Publication date
01-05-2017
Publisher
Springer US
Published in
Clinical Orthopaedics and Related Research® / Issue 5/2017
Print ISSN: 0009-921X
Electronic ISSN: 1528-1132
DOI
https://doi.org/10.1007/s11999-016-5182-8

Other articles of this Issue 5/2017

Clinical Orthopaedics and Related Research® 5/2017 Go to the issue