Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2016

Open Access 01-12-2016 | Research article

Wet, volatile, and dry biomarkers of exercise-induced muscle fatigue

Authors: Josef Finsterer, Vivian E. Drory

Published in: BMC Musculoskeletal Disorders | Issue 1/2016

Login to get access

Abstract

Background

The physiological background of exercise-induced muscle fatigue(EIMUF) is only poorly understood. Thus, monitoring of EIMUF by a single or multiple biomarkers(BMs) is under debate.
After a systematic literature review 91 papers were included.

Results

EIMUF is mainly due to depletion of substrates, increased oxidative stress, muscle membrane depolarisation following potassium depletion, muscle hyperthermia, muscle damage, impaired oxygen supply to the muscle, activation of an inflammatory response, or impaired calcium-handling. Dehydration, hyperammonemia, mitochondrial biogenesis, and genetic responses are also discussed. Since EIMUF is dependent on age, sex, degree of fatigue, type, intensity, and duration of exercise, energy supply during exercise, climate, training status (physical fitness), and health status, BMs currently available for monitoring EIMUF have limited reliability. Generally, wet, volatile, and dry BMs are differentiated. Among dry BMs of EIMUF the most promising include power output measures, electrophysiological measures, cardiologic measures, and questionnaires. Among wet BMs of EIMUF those most applicable include markers of ATP-metabolism, of oxidative stress, muscle damage, and inflammation. VO2-kinetics are used as a volatile BM.

Conclusions

Though the physiology of EIMUF remains to be fully elucidated, some promising BMs have been recently introduced, which together with other BMs, could be useful in monitoring EIMUF. The combination of biomarkers seems to be more efficient than a single biomarker to monitor EIMUF. However, it is essential that efficacy, reliability, and applicability of each BM candidate is validated in appropriate studies.
Literature
1.
go back to reference Palacios G, Pedrero-Chamizo R, Palacios N, Maroto-Sánchez B, Aznar S, González-Gross M, et al. Biomarkers of physical activity and exercise. Nutr Hosp. 2015;31 Suppl 3:237–44.PubMed Palacios G, Pedrero-Chamizo R, Palacios N, Maroto-Sánchez B, Aznar S, González-Gross M, et al. Biomarkers of physical activity and exercise. Nutr Hosp. 2015;31 Suppl 3:237–44.PubMed
4.
go back to reference Skurvydas A, Streckis V, Mickeviciene D, Kamandulis S, Stanislovaitis A, Mamkus G. Effect of age on metabolic fatigue and on indirect symptoms of skeletal muscle damage after stretch-shortening exercise. J Sports Med Phys Fitness. 2006;46:431–41.PubMed Skurvydas A, Streckis V, Mickeviciene D, Kamandulis S, Stanislovaitis A, Mamkus G. Effect of age on metabolic fatigue and on indirect symptoms of skeletal muscle damage after stretch-shortening exercise. J Sports Med Phys Fitness. 2006;46:431–41.PubMed
5.
go back to reference Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS, et al. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39:377–90.CrossRefPubMed Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS, et al. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39:377–90.CrossRefPubMed
6.
go back to reference Pennuto M, Greensmith L, Pradat PF, Sorarù G; European SBMA Consortium. 210th ENMC International Workshop: Research and clinical management of patients with spinal and bulbar muscular atrophy, 27–29 March, 2015, Naarden, The Netherlands. Neuromuscul Disord. 2015. doi:10.1016/j.nmd.2015.06.462. Pennuto M, Greensmith L, Pradat PF, Sorarù G; European SBMA Consortium. 210th ENMC International Workshop: Research and clinical management of patients with spinal and bulbar muscular atrophy, 27–29 March, 2015, Naarden, The Netherlands. Neuromuscul Disord. 2015. doi:10.​1016/​j.​nmd.​2015.​06.​462.
7.
go back to reference Steinberg JG, Delliaux S, Jammes Y. Reliability of different blood indices to explore the oxidative stress in response to maximal cycling and static exercises. Clin Physiol Funct Imaging. 2006;26:106–12.CrossRefPubMed Steinberg JG, Delliaux S, Jammes Y. Reliability of different blood indices to explore the oxidative stress in response to maximal cycling and static exercises. Clin Physiol Funct Imaging. 2006;26:106–12.CrossRefPubMed
8.
go back to reference Walker S, Peltonen H, Avela J, Häkkinen K. Neuromuscular fatigue in young and older men using constant or variable resistance. Eur J Appl Physiol. 2013;113:1069–79.CrossRefPubMed Walker S, Peltonen H, Avela J, Häkkinen K. Neuromuscular fatigue in young and older men using constant or variable resistance. Eur J Appl Physiol. 2013;113:1069–79.CrossRefPubMed
9.
go back to reference Edwards RHT. Biochemical basis of fatigue in exercise performance. Champaign: Human Kinetics; 1983. Edwards RHT. Biochemical basis of fatigue in exercise performance. Champaign: Human Kinetics; 1983.
10.
go back to reference Knicker AJ, Renshaw I, Oldham AR, Cairns SP. Interactive processes link the multiple symptoms of fatigue in sport competition. Sports Med. 2011;41:307–28.CrossRefPubMed Knicker AJ, Renshaw I, Oldham AR, Cairns SP. Interactive processes link the multiple symptoms of fatigue in sport competition. Sports Med. 2011;41:307–28.CrossRefPubMed
11.
go back to reference Nessler JA, Huynh H, McDougal M. A single bout of resistance exercise does not affect nonlinear dynamics of lower extremity kinematics during treadmill walking. Gait Posture. 2011;34:285–7.CrossRefPubMed Nessler JA, Huynh H, McDougal M. A single bout of resistance exercise does not affect nonlinear dynamics of lower extremity kinematics during treadmill walking. Gait Posture. 2011;34:285–7.CrossRefPubMed
12.
go back to reference Garvican LA, Hammond K, Varley MC, Gore CJ, Billaut F, Aughey RJ. Lower running performance and exacerbated fatigue in soccer played at 1600 m. Int J Sports Physiol Perform. 2014;9:397–404.CrossRefPubMed Garvican LA, Hammond K, Varley MC, Gore CJ, Billaut F, Aughey RJ. Lower running performance and exacerbated fatigue in soccer played at 1600 m. Int J Sports Physiol Perform. 2014;9:397–404.CrossRefPubMed
13.
go back to reference Feng Z, Bai L, Yan J, Li Y, Shen W, Wang Y, et al. Mitochondrial dynamic remodeling in strenuous exercise-induced muscle and mitochondrial dysfunction: regulatory effects of hydroxytyrosol. Free Radic Biol Med. 2011;50:1437–46.CrossRefPubMed Feng Z, Bai L, Yan J, Li Y, Shen W, Wang Y, et al. Mitochondrial dynamic remodeling in strenuous exercise-induced muscle and mitochondrial dysfunction: regulatory effects of hydroxytyrosol. Free Radic Biol Med. 2011;50:1437–46.CrossRefPubMed
15.
go back to reference Rzanny R, Grassme R, Reichenbach JR, Scholle HC, Kaiser WA. Investigations of back muscle fatigue by simultaneous 31P MRS and surface EMG measurements. Biomed Tech (Berl). 2006;51:305–13.CrossRef Rzanny R, Grassme R, Reichenbach JR, Scholle HC, Kaiser WA. Investigations of back muscle fatigue by simultaneous 31P MRS and surface EMG measurements. Biomed Tech (Berl). 2006;51:305–13.CrossRef
16.
go back to reference Sherman WM, Costill DL, Fink WJ, Hagerman FC, Armstrong LE, Murray TF. Effect of a 42.2-km footrace and subsequent rest or exercise on muscle glycogen and enzymes. J Appl Physiol Respir Environ Exerc Physiol. 1983;55:1219–24.PubMed Sherman WM, Costill DL, Fink WJ, Hagerman FC, Armstrong LE, Murray TF. Effect of a 42.2-km footrace and subsequent rest or exercise on muscle glycogen and enzymes. J Appl Physiol Respir Environ Exerc Physiol. 1983;55:1219–24.PubMed
17.
go back to reference Callow M, Morton A, Guppy M. Marathon fatigue: the role of plasma fatty acids, muscle glycogen and blood glucose. Eur J Appl Physiol Occup Physiol. 1986;55:654–61.CrossRefPubMed Callow M, Morton A, Guppy M. Marathon fatigue: the role of plasma fatty acids, muscle glycogen and blood glucose. Eur J Appl Physiol Occup Physiol. 1986;55:654–61.CrossRefPubMed
18.
go back to reference Vissing J, Haller RG. Mechanisms of exertional fatigue in muscle glycogenoses. Neuromuscul Disord. 2012;22 suppl 3:S168–71.CrossRefPubMed Vissing J, Haller RG. Mechanisms of exertional fatigue in muscle glycogenoses. Neuromuscul Disord. 2012;22 suppl 3:S168–71.CrossRefPubMed
19.
go back to reference Samaras A, Tsarouhas K, Paschalidis E, Giamouzis G, Triposkiadis F, Tsitsimpikou C, et al. Effect of a special carbohydrate-protein bar and tomato juice supplementation on oxidative stress markers and vascular endothelial dynamics in ultra-marathon runners. Food Chem Toxicol. 2014;69:231–6. doi:10.1016/j.fct.2014.03.029.CrossRefPubMed Samaras A, Tsarouhas K, Paschalidis E, Giamouzis G, Triposkiadis F, Tsitsimpikou C, et al. Effect of a special carbohydrate-protein bar and tomato juice supplementation on oxidative stress markers and vascular endothelial dynamics in ultra-marathon runners. Food Chem Toxicol. 2014;69:231–6. doi:10.​1016/​j.​fct.​2014.​03.​029.CrossRefPubMed
20.
go back to reference Kerasioti E, Kiskini A, Veskoukis A, Jamurtas A, Tsitsimpikou C, Tsatsakis AM, et al. Effect of a special carbohydrate-protein cake on oxidative stress markers after exhaustive cycling in humans. Food Chem Toxicol. 2012;50:2805–10.CrossRefPubMed Kerasioti E, Kiskini A, Veskoukis A, Jamurtas A, Tsitsimpikou C, Tsatsakis AM, et al. Effect of a special carbohydrate-protein cake on oxidative stress markers after exhaustive cycling in humans. Food Chem Toxicol. 2012;50:2805–10.CrossRefPubMed
21.
go back to reference Hammouda O, Chtourou H, Chahed H, Ferchichi S, Chaouachi A, Kallel C, et al. High intensity exercise affects diurnal variation of some biological markers in trained subjects. Int J Sports Med. 2012;33:886–91.CrossRefPubMed Hammouda O, Chtourou H, Chahed H, Ferchichi S, Chaouachi A, Kallel C, et al. High intensity exercise affects diurnal variation of some biological markers in trained subjects. Int J Sports Med. 2012;33:886–91.CrossRefPubMed
22.
go back to reference Peake JM, Suzuki K, Coombes JS. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem. 2007;18:357–71.CrossRefPubMed Peake JM, Suzuki K, Coombes JS. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem. 2007;18:357–71.CrossRefPubMed
23.
go back to reference Zwarts MJ, Bleijenberg G, van Engelen BG. Clinical neurophysiology of fatigue. Clin Neurophysiol. 2008;119:2–10.CrossRefPubMed Zwarts MJ, Bleijenberg G, van Engelen BG. Clinical neurophysiology of fatigue. Clin Neurophysiol. 2008;119:2–10.CrossRefPubMed
24.
go back to reference Fortune E, Lowery MM. Effect of extracellular potassium accumulation on muscle fiber conduction velocity: a simulation study. Ann Biomed Eng. 2009;37:2105–17.CrossRefPubMed Fortune E, Lowery MM. Effect of extracellular potassium accumulation on muscle fiber conduction velocity: a simulation study. Ann Biomed Eng. 2009;37:2105–17.CrossRefPubMed
25.
go back to reference Wasserman K, Stringer WW, Casaburi R, Zhang YY. Mechanism of the exercise hyperkalemia: an alternate hypothesis. J Appl Physiol. 1997;83:631–43.PubMed Wasserman K, Stringer WW, Casaburi R, Zhang YY. Mechanism of the exercise hyperkalemia: an alternate hypothesis. J Appl Physiol. 1997;83:631–43.PubMed
27.
go back to reference Del Coso J, Salinero JJ, Abián-Vicen J, González-Millán C, Garde S, Vega P, et al. Influence of body mass loss and myoglobinuria on the development of muscle fatigue after a marathon in a warm environment. Appl Physiol Nutr Metab. 2013;38:286–91.CrossRefPubMed Del Coso J, Salinero JJ, Abián-Vicen J, González-Millán C, Garde S, Vega P, et al. Influence of body mass loss and myoglobinuria on the development of muscle fatigue after a marathon in a warm environment. Appl Physiol Nutr Metab. 2013;38:286–91.CrossRefPubMed
28.
go back to reference Hikida RS, Staron RS, Hagerman FC, Sherman WM, Costill DL. Muscle fiber necrosis associated with human marathon runners. J Neurol Sci. 1983;59:185–203.CrossRefPubMed Hikida RS, Staron RS, Hagerman FC, Sherman WM, Costill DL. Muscle fiber necrosis associated with human marathon runners. J Neurol Sci. 1983;59:185–203.CrossRefPubMed
30.
go back to reference Behnke BJ, Delp MD, McDonough P, Spier SA, Poole DC, Musch TI. Effects of chronic heart failure on microvascular oxygen exchange dynamics in muscles of contrasting fiber type. Cardiovasc Res. 2004;61:325–32.CrossRefPubMed Behnke BJ, Delp MD, McDonough P, Spier SA, Poole DC, Musch TI. Effects of chronic heart failure on microvascular oxygen exchange dynamics in muscles of contrasting fiber type. Cardiovasc Res. 2004;61:325–32.CrossRefPubMed
31.
go back to reference Zhao X, Yoshida M, Brotto L, Takeshima H, Weisleder N, Hirata Y, et al. Enhanced resistance to fatigue and altered calcium handling properties of sarcalumenin knockout mice. Physiol Genomics. 2005;23:72–8.CrossRefPubMed Zhao X, Yoshida M, Brotto L, Takeshima H, Weisleder N, Hirata Y, et al. Enhanced resistance to fatigue and altered calcium handling properties of sarcalumenin knockout mice. Physiol Genomics. 2005;23:72–8.CrossRefPubMed
32.
go back to reference Schiff HB, MacSearraigh ET, Kallmeyer JC. Myoglobinuria, rhabdomyolysis and marathon running. Q J Med. 1978;47:463–72.PubMed Schiff HB, MacSearraigh ET, Kallmeyer JC. Myoglobinuria, rhabdomyolysis and marathon running. Q J Med. 1978;47:463–72.PubMed
33.
go back to reference Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem. 2007;282:30014–21.CrossRefPubMed Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem. 2007;282:30014–21.CrossRefPubMed
34.
go back to reference Calvert LD, Steiner MC, Morgan MD, Singh SJ. Plasma ammonia response to incremental cycling and walking tests in COPD. Respir Med. 2010;104:675–81.CrossRefPubMed Calvert LD, Steiner MC, Morgan MD, Singh SJ. Plasma ammonia response to incremental cycling and walking tests in COPD. Respir Med. 2010;104:675–81.CrossRefPubMed
35.
go back to reference Saleem A, Adhihetty PJ, Hood DA. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle. Physiol Genomics. 2009;37:58–66.CrossRefPubMed Saleem A, Adhihetty PJ, Hood DA. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle. Physiol Genomics. 2009;37:58–66.CrossRefPubMed
36.
go back to reference Boullosa DA, Tuimil JL, Alegre LM, Iglesias E, Lusquiños F. Concurrent fatigue and potentiation in endurance athletes. Int J Sports Physiol Perform. 2011;6:82–93.PubMed Boullosa DA, Tuimil JL, Alegre LM, Iglesias E, Lusquiños F. Concurrent fatigue and potentiation in endurance athletes. Int J Sports Physiol Perform. 2011;6:82–93.PubMed
37.
go back to reference Harrison AJ. Throwing and catching movements exhibit post-activation potentiation effects following fatigue. Sports Biomech. 2011;10:185–96.CrossRefPubMed Harrison AJ. Throwing and catching movements exhibit post-activation potentiation effects following fatigue. Sports Biomech. 2011;10:185–96.CrossRefPubMed
38.
go back to reference Carson RG, Riek S, Shahbazpour N. Central and peripheral mediation of human force sensation following eccentric or concentric contractions. J Physiol. 2002;539:913–25.PubMedCentralCrossRefPubMed Carson RG, Riek S, Shahbazpour N. Central and peripheral mediation of human force sensation following eccentric or concentric contractions. J Physiol. 2002;539:913–25.PubMedCentralCrossRefPubMed
39.
go back to reference Detanico D, Dal Pupo J, Franchini E, Dos Santos SG. Effects of successive judo matches on fatigue and muscle damage markers. J Strength Cond Res. 2015;29:1010–6.CrossRefPubMed Detanico D, Dal Pupo J, Franchini E, Dos Santos SG. Effects of successive judo matches on fatigue and muscle damage markers. J Strength Cond Res. 2015;29:1010–6.CrossRefPubMed
40.
go back to reference Gorostiaga EM, Navarro-Amézqueta I, González-Izal M, Malanda A, Granados C, Ibáñez J, et al. Blood lactate and sEMG at different knee angles during fatiguing leg press exercise. Eur J Appl Physiol. 2012;112:1349–58.CrossRefPubMed Gorostiaga EM, Navarro-Amézqueta I, González-Izal M, Malanda A, Granados C, Ibáñez J, et al. Blood lactate and sEMG at different knee angles during fatiguing leg press exercise. Eur J Appl Physiol. 2012;112:1349–58.CrossRefPubMed
41.
go back to reference Hudspeth MP, Holden KR, Crawford TO. The “slurp” test: bedside evaluation of bulbar muscle fatigue. Pediatrics. 2006;118:e530–3.CrossRefPubMed Hudspeth MP, Holden KR, Crawford TO. The “slurp” test: bedside evaluation of bulbar muscle fatigue. Pediatrics. 2006;118:e530–3.CrossRefPubMed
42.
go back to reference Mano T, Katsuno M, Banno H, Suzuki K, Suga N, Hashizume A, et al. Tongue pressure as a novel biomarker of spinal and bulbar muscular atrophy. Neurology. 2014;82:255–62.CrossRefPubMed Mano T, Katsuno M, Banno H, Suzuki K, Suga N, Hashizume A, et al. Tongue pressure as a novel biomarker of spinal and bulbar muscular atrophy. Neurology. 2014;82:255–62.CrossRefPubMed
43.
go back to reference Molina R, Denadai BS. Dissociated time course recovery between rate of force development and peak torque after eccentric exercise. Clin Physiol Funct Imaging. 2012;32:179–84.CrossRefPubMed Molina R, Denadai BS. Dissociated time course recovery between rate of force development and peak torque after eccentric exercise. Clin Physiol Funct Imaging. 2012;32:179–84.CrossRefPubMed
44.
go back to reference McLellan CP, Lovell DI, Gass GC. Markers of postmatch fatigue in professional Rugby League players. J Strength Cond Res. 2011;25:1030–9.CrossRefPubMed McLellan CP, Lovell DI, Gass GC. Markers of postmatch fatigue in professional Rugby League players. J Strength Cond Res. 2011;25:1030–9.CrossRefPubMed
45.
go back to reference Thorpe RT, Strudwick AJ, Buchheit M, Atkinson G, Drust B, Gregson W. Monitoring fatigue during the in-season competitive phase in elite soccer players. Int J Sports Physiol Perform. 2015;(in press). Thorpe RT, Strudwick AJ, Buchheit M, Atkinson G, Drust B, Gregson W. Monitoring fatigue during the in-season competitive phase in elite soccer players. Int J Sports Physiol Perform. 2015;(in press).
46.
go back to reference Chatzinikolaou A, Fatouros IG, Gourgoulis V, Avloniti A, Jamurtas AZ, Nikolaidis MG, et al. Time course of changes in performance and inflammatory responses after acute plyometric exercise. J Strength Cond Res. 2010;24:1389–98.CrossRefPubMed Chatzinikolaou A, Fatouros IG, Gourgoulis V, Avloniti A, Jamurtas AZ, Nikolaidis MG, et al. Time course of changes in performance and inflammatory responses after acute plyometric exercise. J Strength Cond Res. 2010;24:1389–98.CrossRefPubMed
47.
go back to reference Strutzenberger G, Moore J, Griffiths H, Schwameder H, Irwin G. Effects of gluteal kinesio-taping on performance with respect to fatigue in rugby players. Eur J Sport Sci. 2015;3:1–7.CrossRef Strutzenberger G, Moore J, Griffiths H, Schwameder H, Irwin G. Effects of gluteal kinesio-taping on performance with respect to fatigue in rugby players. Eur J Sport Sci. 2015;3:1–7.CrossRef
49.
go back to reference Storer TW, Woodhouse L, Magliano L, Singh AB, Dzekov C, Dzekov J, et al. Changes in muscle mass, muscle strength, and power but not physical function are related to testosterone dose in healthy older men. J Am Geriatr Soc. 2008;56:1991–9.PubMedCentralCrossRefPubMed Storer TW, Woodhouse L, Magliano L, Singh AB, Dzekov C, Dzekov J, et al. Changes in muscle mass, muscle strength, and power but not physical function are related to testosterone dose in healthy older men. J Am Geriatr Soc. 2008;56:1991–9.PubMedCentralCrossRefPubMed
50.
go back to reference Hammouda O, Chtourou H, Chahed H, Ferchichi S, Kallel C, Miled A, et al. Diurnal variations of plasma homocysteine, total antioxidant status, and biological markers of muscle injury during repeated sprint: effect on performance and muscle fatigue--a pilot study. Chronobiol Int. 2011;28:958–67.CrossRefPubMed Hammouda O, Chtourou H, Chahed H, Ferchichi S, Kallel C, Miled A, et al. Diurnal variations of plasma homocysteine, total antioxidant status, and biological markers of muscle injury during repeated sprint: effect on performance and muscle fatigue--a pilot study. Chronobiol Int. 2011;28:958–67.CrossRefPubMed
51.
go back to reference Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, et al. European recommendations for surface electromyography, results of the SENIAM project 1999. Enschede: Roessingh Research and Development; 1999. p. 44–6. Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, et al. European recommendations for surface electromyography, results of the SENIAM project 1999. Enschede: Roessingh Research and Development; 1999. p. 44–6.
52.
go back to reference Rainoldi A, Gazzoni M, Merletti R, Minetto MA. Mechanical and EMG responses of the vastus lateralis and changes in biochemical variables to isokinetic exercise in endurance and power athletes. J Sports Sci. 2008;26:321–31.CrossRefPubMed Rainoldi A, Gazzoni M, Merletti R, Minetto MA. Mechanical and EMG responses of the vastus lateralis and changes in biochemical variables to isokinetic exercise in endurance and power athletes. J Sports Sci. 2008;26:321–31.CrossRefPubMed
53.
go back to reference Cifrek M, Medved V, Tonković S, Ostojić S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin Biomech (Bristol, Avon). 2009;24:327–40.CrossRef Cifrek M, Medved V, Tonković S, Ostojić S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin Biomech (Bristol, Avon). 2009;24:327–40.CrossRef
54.
go back to reference Pereira GR, de Oliveira LF, Nadal J. Isometric fatigue patterns in time and time-frequency domains of triceps surae muscle in different knee positions. J Electromyogr Kinesiol. 2011;21:572–8.CrossRefPubMed Pereira GR, de Oliveira LF, Nadal J. Isometric fatigue patterns in time and time-frequency domains of triceps surae muscle in different knee positions. J Electromyogr Kinesiol. 2011;21:572–8.CrossRefPubMed
55.
go back to reference Gonzalez-Izal M, Lusa Cadore E, Izquierdo M. Muscle conduction velocity, surface electromyography variables, and echo intensity during concentric and eccentric fatigue. Muscle Nerve. 2014;49:389–97.CrossRefPubMed Gonzalez-Izal M, Lusa Cadore E, Izquierdo M. Muscle conduction velocity, surface electromyography variables, and echo intensity during concentric and eccentric fatigue. Muscle Nerve. 2014;49:389–97.CrossRefPubMed
56.
go back to reference Beck TW, Ye X, Wages NP. Local muscle endurance is associated with fatigue-based changes in electromyographic spectral properties, but not with conduction velocity. J Electromyogr Kinesiol. 2015;25:451–6.CrossRefPubMed Beck TW, Ye X, Wages NP. Local muscle endurance is associated with fatigue-based changes in electromyographic spectral properties, but not with conduction velocity. J Electromyogr Kinesiol. 2015;25:451–6.CrossRefPubMed
57.
go back to reference Stewart D, Farina D, Shen C, Macaluso A. Muscle fibre conduction velocity during a 30-s Wingate anaerobic test. J Electromyogr Kinesiol. 2011;21:418–22.CrossRefPubMed Stewart D, Farina D, Shen C, Macaluso A. Muscle fibre conduction velocity during a 30-s Wingate anaerobic test. J Electromyogr Kinesiol. 2011;21:418–22.CrossRefPubMed
58.
go back to reference Schmitz JP, van Dijk JP, Hilbers PA, Nicolay K, Jeneson JA, Stegeman DF. Unchanged muscle fiber conduction velocity relates to mild acidosis during exhaustive bicycling. Eur J Appl Physiol. 2012;112:1593–602.PubMedCentralCrossRefPubMed Schmitz JP, van Dijk JP, Hilbers PA, Nicolay K, Jeneson JA, Stegeman DF. Unchanged muscle fiber conduction velocity relates to mild acidosis during exhaustive bicycling. Eur J Appl Physiol. 2012;112:1593–602.PubMedCentralCrossRefPubMed
59.
go back to reference Kashigar A, Udupa K, Fish J, Chen R. Neurophysiological assessment of fatigue in electrical injury patients. Exp Brain Res. 2014;232:1013–23.CrossRefPubMed Kashigar A, Udupa K, Fish J, Chen R. Neurophysiological assessment of fatigue in electrical injury patients. Exp Brain Res. 2014;232:1013–23.CrossRefPubMed
60.
go back to reference Galen SS, Guffey DR, Coburn JW, Malek MH. Determining the electromyographic fatigue threshold following a single visit exercise test. J Vis Exp. 2015;(101). doi:10.3791/52729. Galen SS, Guffey DR, Coburn JW, Malek MH. Determining the electromyographic fatigue threshold following a single visit exercise test. J Vis Exp. 2015;(101). doi:10.​3791/​52729.
61.
go back to reference Stout JR, Fragala MS, Hoffman JR, Robinson 4th EH, Mccormack WP, Townsend JR, et al. C-terminal agrin fragment is inversely related to neuromuscular fatigue in older men. Muscle Nerve. 2015;51:132–3.CrossRefPubMed Stout JR, Fragala MS, Hoffman JR, Robinson 4th EH, Mccormack WP, Townsend JR, et al. C-terminal agrin fragment is inversely related to neuromuscular fatigue in older men. Muscle Nerve. 2015;51:132–3.CrossRefPubMed
62.
go back to reference Emerson NS, Stout JR, Fukuda DH, Robinson EH, Iv STC, Beyer KS, et al. Resistance training improves capacity to delay neuromuscular fatigue in older adults. Arch Gerontol Geriatr. 2015;61:27–32.CrossRefPubMed Emerson NS, Stout JR, Fukuda DH, Robinson EH, Iv STC, Beyer KS, et al. Resistance training improves capacity to delay neuromuscular fatigue in older adults. Arch Gerontol Geriatr. 2015;61:27–32.CrossRefPubMed
63.
go back to reference Camic CL, Kovacs AJ, Enquist EA, VanDusseldorp TA, Hill EC, Calantoni AM, et al. An electromyographic-based test for estimating neuromuscular fatigue during incremental treadmill running. Physiol Meas. 2014;35:2401–13.CrossRefPubMed Camic CL, Kovacs AJ, Enquist EA, VanDusseldorp TA, Hill EC, Calantoni AM, et al. An electromyographic-based test for estimating neuromuscular fatigue during incremental treadmill running. Physiol Meas. 2014;35:2401–13.CrossRefPubMed
64.
go back to reference Bergstrom HC, Housh TJ, Cochrane KC, Jenkins ND, Lewis RW, Traylor DA, et al. An examination of neuromuscular and metabolic fatigue thresholds. Physiol Meas. 2013;34:1253–67.CrossRefPubMed Bergstrom HC, Housh TJ, Cochrane KC, Jenkins ND, Lewis RW, Traylor DA, et al. An examination of neuromuscular and metabolic fatigue thresholds. Physiol Meas. 2013;34:1253–67.CrossRefPubMed
65.
go back to reference Zuniga JM, Housh TJ, Camic CL, Hendrix CR, Schmidt RJ, Mielke M, et al. A mechanomyographic fatigue threshold test for cycling. Int J Sports Med. 2010;31:636–43.CrossRefPubMed Zuniga JM, Housh TJ, Camic CL, Hendrix CR, Schmidt RJ, Mielke M, et al. A mechanomyographic fatigue threshold test for cycling. Int J Sports Med. 2010;31:636–43.CrossRefPubMed
66.
go back to reference Jenkins ND, Buckner SL, Baker RB, Bergstrom HC, Cochrane KC, Weir JP, et al. Effects of 6 weeks of aerobic exercise combined with conjugated linoleic acid on the physical working capacity at fatigue threshold. J Strength Cond Res. 2014;28:2127–35.CrossRefPubMed Jenkins ND, Buckner SL, Baker RB, Bergstrom HC, Cochrane KC, Weir JP, et al. Effects of 6 weeks of aerobic exercise combined with conjugated linoleic acid on the physical working capacity at fatigue threshold. J Strength Cond Res. 2014;28:2127–35.CrossRefPubMed
67.
go back to reference Dingwell JB, Joubert JE, Diefenthaeler F, Trinity JD. Changes in muscle activity and kinematics of highly trained cyclists during fatigue. IEEE Trans Biomed Eng. 2008;55:2666–74.PubMedCentralCrossRefPubMed Dingwell JB, Joubert JE, Diefenthaeler F, Trinity JD. Changes in muscle activity and kinematics of highly trained cyclists during fatigue. IEEE Trans Biomed Eng. 2008;55:2666–74.PubMedCentralCrossRefPubMed
68.
69.
go back to reference Qin J, Lin JH, Faber GS, Buchholz B, Xu X. Upper extremity kinematic and kinetic adaptations during a fatiguing repetitive task. J Electromyogr Kinesiol. 2014;24:404–11.CrossRefPubMed Qin J, Lin JH, Faber GS, Buchholz B, Xu X. Upper extremity kinematic and kinetic adaptations during a fatiguing repetitive task. J Electromyogr Kinesiol. 2014;24:404–11.CrossRefPubMed
70.
go back to reference Cè E, Rampichini S, Limonta E, Esposito F. Torque and mechanomyogram correlations during muscle relaxation: effects of fatigue and time-course of recovery. J Electromyogr Kinesiol. 2013;23:1295–303.CrossRefPubMed Cè E, Rampichini S, Limonta E, Esposito F. Torque and mechanomyogram correlations during muscle relaxation: effects of fatigue and time-course of recovery. J Electromyogr Kinesiol. 2013;23:1295–303.CrossRefPubMed
72.
go back to reference Ra SG, Maeda S, Higashino R, Imai T, Miyakawa S. Metabolomics of salivary fatigue markers in soccer players after consecutive games. Appl Physiol Nutr Metab. 2014;39:1120–6.CrossRefPubMed Ra SG, Maeda S, Higashino R, Imai T, Miyakawa S. Metabolomics of salivary fatigue markers in soccer players after consecutive games. Appl Physiol Nutr Metab. 2014;39:1120–6.CrossRefPubMed
73.
go back to reference Gosker HR, Schols AM. Fatigued muscles in COPD but no finishing line in sight. Eur Respir J. 2008;31:693–4.CrossRefPubMed Gosker HR, Schols AM. Fatigued muscles in COPD but no finishing line in sight. Eur Respir J. 2008;31:693–4.CrossRefPubMed
74.
go back to reference Siciliano G, Pasquali L, Manca ML, Del Corona A, Tessa A, Patrono C, et al. The relationship between anaerobic lactate threshold and plasma catecholamines during incremental exercise in hereditary spastic paraplegia. Funct Neurol. 2003;18:83–7.PubMed Siciliano G, Pasquali L, Manca ML, Del Corona A, Tessa A, Patrono C, et al. The relationship between anaerobic lactate threshold and plasma catecholamines during incremental exercise in hereditary spastic paraplegia. Funct Neurol. 2003;18:83–7.PubMed
75.
go back to reference Navalta JW, Hrncir SP. Core stabilization exercises enhance lactate clearance following high-intensity exercise. J Strength Cond Res. 2007;21:1305–9.PubMed Navalta JW, Hrncir SP. Core stabilization exercises enhance lactate clearance following high-intensity exercise. J Strength Cond Res. 2007;21:1305–9.PubMed
76.
go back to reference Bianchi GP, Grossi G, Bargossi AM. May peripheral and central fatigue be correlated? Can we monitor them by means of clinical laboratory tools? J Sports Med Phys Fitness. 1997;37:194–9.PubMed Bianchi GP, Grossi G, Bargossi AM. May peripheral and central fatigue be correlated? Can we monitor them by means of clinical laboratory tools? J Sports Med Phys Fitness. 1997;37:194–9.PubMed
77.
go back to reference Speranza L, Grilli A, Patruno A, Franceschelli S, Felzani G, Pesce M, et al. Plasmatic markers of muscular stress in isokinetic exercise. J Biol Regul Homeost Agents. 2007;21:21–9.PubMed Speranza L, Grilli A, Patruno A, Franceschelli S, Felzani G, Pesce M, et al. Plasmatic markers of muscular stress in isokinetic exercise. J Biol Regul Homeost Agents. 2007;21:21–9.PubMed
78.
go back to reference Jammes Y, Steinberg JG, Delliaux S, Brégeon F. Chronic fatigue syndrome combines increased exercise-induced oxidative stress and reduced cytokine and Hsp responses. J Intern Med. 2009;266:196–206.CrossRefPubMed Jammes Y, Steinberg JG, Delliaux S, Brégeon F. Chronic fatigue syndrome combines increased exercise-induced oxidative stress and reduced cytokine and Hsp responses. J Intern Med. 2009;266:196–206.CrossRefPubMed
79.
go back to reference Saxton JM, Claxton D, Winter E, Pockley AG. Peripheral blood leucocyte functional responses to acute eccentric exercise in humans are influenced by systemic stress, but not by exercise-induced muscle damage. Clin Sci (Lond). 2003;104:69–77.CrossRef Saxton JM, Claxton D, Winter E, Pockley AG. Peripheral blood leucocyte functional responses to acute eccentric exercise in humans are influenced by systemic stress, but not by exercise-induced muscle damage. Clin Sci (Lond). 2003;104:69–77.CrossRef
81.
go back to reference Brandt C, Pedersen BK. The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol. 2010;(in press) Brandt C, Pedersen BK. The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol. 2010;(in press)
82.
83.
go back to reference Febbraio MA, Pedersen BK. Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev. 2005;33:114–9.CrossRefPubMed Febbraio MA, Pedersen BK. Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev. 2005;33:114–9.CrossRefPubMed
84.
go back to reference Machado M, Koch AJ, Willardson JM, Pereira LS, Cardoso MI, Motta MK, et al. Effect of varying rest intervals between sets of assistance exercises on creatine kinase and lactate dehydrogenase responses. J Strength Cond Res. 2011;25:1339–45.CrossRefPubMed Machado M, Koch AJ, Willardson JM, Pereira LS, Cardoso MI, Motta MK, et al. Effect of varying rest intervals between sets of assistance exercises on creatine kinase and lactate dehydrogenase responses. J Strength Cond Res. 2011;25:1339–45.CrossRefPubMed
85.
go back to reference Emerson NS, Fukuda DH, Stout JR, Robinson 4th EH, McCormack WP, Scanlon TC, et al. Physical working capacity at fatigue threshold (PWCFT) is associated with sarcopenia-related body composition and measures of functionality in older adults. Arch Gerontol Geriatr. 2014;59:300–4.CrossRefPubMed Emerson NS, Fukuda DH, Stout JR, Robinson 4th EH, McCormack WP, Scanlon TC, et al. Physical working capacity at fatigue threshold (PWCFT) is associated with sarcopenia-related body composition and measures of functionality in older adults. Arch Gerontol Geriatr. 2014;59:300–4.CrossRefPubMed
86.
go back to reference deVries HA, Brodowicz GR, Robertson LD, Svoboda MD, Schendel JS, Tichy AM, et al. Estimating physical working capacity and training changes in the elderly at the fatigue threshold (PWCft). Ergonomics. 1989;32:967–77.CrossRefPubMed deVries HA, Brodowicz GR, Robertson LD, Svoboda MD, Schendel JS, Tichy AM, et al. Estimating physical working capacity and training changes in the elderly at the fatigue threshold (PWCft). Ergonomics. 1989;32:967–77.CrossRefPubMed
87.
go back to reference Snell PG, Mitchell JH. The role of maximal oxygen uptake in exercise performance. Clin Chest Med. 1984;5:51–62.PubMed Snell PG, Mitchell JH. The role of maximal oxygen uptake in exercise performance. Clin Chest Med. 1984;5:51–62.PubMed
88.
go back to reference Smith-Ryan AE, Woessner MN, Melvin MN, Wingfield HL, Hackney AC. The effects of beta-alanine supplementation on physical working capacity at heart rate threshold. Clin Physiol Funct Imaging. 2014;34:397–404.CrossRefPubMed Smith-Ryan AE, Woessner MN, Melvin MN, Wingfield HL, Hackney AC. The effects of beta-alanine supplementation on physical working capacity at heart rate threshold. Clin Physiol Funct Imaging. 2014;34:397–404.CrossRefPubMed
89.
go back to reference Makrides L, Heigenhauser GJ, McCartney N, Jones NL. Maximal short term exercise capacity in healthy subjects aged 15–70 years. Clin Sci (Lond). 1985;69:197–205.CrossRef Makrides L, Heigenhauser GJ, McCartney N, Jones NL. Maximal short term exercise capacity in healthy subjects aged 15–70 years. Clin Sci (Lond). 1985;69:197–205.CrossRef
90.
go back to reference Grassi B, Porcelli S, Salvadego D, Zoladz JA. Slow VO2 kinetics during moderate-intensity exercise as markers of lower metabolic stability and lower exercise tolerance. Eur J Appl Physiol. 2011;111:345–55.CrossRefPubMed Grassi B, Porcelli S, Salvadego D, Zoladz JA. Slow VO2 kinetics during moderate-intensity exercise as markers of lower metabolic stability and lower exercise tolerance. Eur J Appl Physiol. 2011;111:345–55.CrossRefPubMed
91.
go back to reference Chen SW, Liaw JW, Chan HL, Chang YJ, Ku CH. A real-time fatigue monitoring and analysis system for lower extremity muscles with cycling movement. Sensors (Basel). 2014;14:12410–24. doi:10.3390/s140712410.CrossRef Chen SW, Liaw JW, Chan HL, Chang YJ, Ku CH. A real-time fatigue monitoring and analysis system for lower extremity muscles with cycling movement. Sensors (Basel). 2014;14:12410–24. doi:10.​3390/​s140712410.CrossRef
Metadata
Title
Wet, volatile, and dry biomarkers of exercise-induced muscle fatigue
Authors
Josef Finsterer
Vivian E. Drory
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2016
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-016-0869-2

Other articles of this Issue 1/2016

BMC Musculoskeletal Disorders 1/2016 Go to the issue