Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2014

Open Access 01-12-2014 | Research

Voxel-wise quantification of myocardial blood flow with cardiovascular magnetic resonance: effect of variations in methodology and validation with positron emission tomography

Authors: Christopher A Miller, Josephine H Naish, Mark P Ainslie, Christine Tonge, Deborah Tout, Parthiban Arumugam, Anita Banerji, Robin M Egdell, David Clark, Peter Weale, Christopher D Steadman, Gerry P McCann, Simon G Ray, Geoffrey JM Parker, Matthias Schmitt

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2014

Login to get access

Abstract

Background

Quantitative assessment of myocardial blood flow (MBF) from cardiovascular magnetic resonance (CMR) perfusion images appears to offer advantages over qualitative assessment. Currently however, clinical translation is lacking, at least in part due to considerable disparity in quantification methodology. The aim of this study was to evaluate the effect of common methodological differences in CMR voxel-wise measurement of MBF, using position emission tomography (PET) as external validation.

Methods

Eighteen subjects, including 9 with significant coronary artery disease (CAD) and 9 healthy volunteers prospectively underwent perfusion CMR. Comparison was made between MBF quantified using: 1. Calculated contrast agent concentration curves (to correct for signal saturation) versus raw signal intensity curves; 2. Mid-ventricular versus basal-ventricular short-axis arterial input function (AIF) extraction; 3. Three different deconvolution approaches; Fermi function parameterization, truncated singular value decomposition (TSVD) and first-order Tikhonov regularization with b-splines. CAD patients also prospectively underwent rubidium-82 PET (median interval 7 days).

Results

MBF was significantly higher when calculated using signal intensity compared to contrast agent concentration curves, and when the AIF was extracted from mid- compared to basal-ventricular images. MBF did not differ significantly between Fermi and Tikhonov, or between Fermi and TVSD deconvolution methods although there was a small difference between TSVD and Tikhonov (0.06 mL/min/g). Agreement between all deconvolution methods was high. MBF derived using each CMR deconvolution method showed a significant linear relationship (p < 0.001) with PET-derived MBF however each method underestimated MBF compared to PET (by 0.19 to 0.35 mL/min/g).

Conclusions

Variations in more complex methodological factors such as deconvolution method have no greater effect on estimated MBF than simple factors such as AIF location and observer variability. Standardization of the quantification process will aid comparison between studies and may help CMR MBF quantification enter clinical use.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, Douglas PS, Foody JM, Gerber TC, Hinderliter AL, King SB, Kligfield PD, Krumholz HM, Kwong RY, Lim MJ, Linderbaum JA, Mack MJ, Munger MA, Prager RL, Sabik JF, Shaw LJ, Sikkema JD, Smith CR, Smith SC, Spertus JA, Williams SV: ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2012, 2012 (126): 3097-137.CrossRef Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, Douglas PS, Foody JM, Gerber TC, Hinderliter AL, King SB, Kligfield PD, Krumholz HM, Kwong RY, Lim MJ, Linderbaum JA, Mack MJ, Munger MA, Prager RL, Sabik JF, Shaw LJ, Sikkema JD, Smith CR, Smith SC, Spertus JA, Williams SV: ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2012, 2012 (126): 3097-137.CrossRef
2.
go back to reference Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, Bijsterveld P, Ridgway JP, Radjenovic A, Dickinson CJ, Ball SG, Plein S: Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012, 379: 453-60. 10.1016/S0140-6736(11)61335-4.PubMedCentralCrossRefPubMed Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, Bijsterveld P, Ridgway JP, Radjenovic A, Dickinson CJ, Ball SG, Plein S: Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012, 379: 453-60. 10.1016/S0140-6736(11)61335-4.PubMedCentralCrossRefPubMed
3.
go back to reference Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG: Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003, 349: 1027-35. 10.1056/NEJMoa025050.CrossRefPubMed Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG: Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003, 349: 1027-35. 10.1056/NEJMoa025050.CrossRefPubMed
4.
go back to reference Patel AR, Antkowiak PF, Nandalur KR, West AM, Salerno M, Arora V, Christopher J, Epstein FH, Kramer CM: Assessment of advanced coronary artery disease: advantages of quantitative cardiac magnetic resonance perfusion analysis. J Am Coll Cardiol. 2010, 56: 561-69. 10.1016/j.jacc.2010.02.061.PubMedCentralCrossRefPubMed Patel AR, Antkowiak PF, Nandalur KR, West AM, Salerno M, Arora V, Christopher J, Epstein FH, Kramer CM: Assessment of advanced coronary artery disease: advantages of quantitative cardiac magnetic resonance perfusion analysis. J Am Coll Cardiol. 2010, 56: 561-69. 10.1016/j.jacc.2010.02.061.PubMedCentralCrossRefPubMed
5.
go back to reference Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H: Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. JACC Cardiovasc Imaging. 2009, 2: 751-58. 10.1016/j.jcmg.2009.04.004.CrossRefPubMed Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H: Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. JACC Cardiovasc Imaging. 2009, 2: 751-58. 10.1016/j.jcmg.2009.04.004.CrossRefPubMed
6.
go back to reference Kajander SA, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, Sipila HT, Teras M, Maki M, Airaksinen J, Hartiala J, Knuuti J: Clinical value of absolute quantification of myocardial perfusion with (15)O-water in coronary artery disease. Circ Cardiovasc Imaging. 2011, 4: 678-84. 10.1161/CIRCIMAGING.110.960732.CrossRefPubMed Kajander SA, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, Sipila HT, Teras M, Maki M, Airaksinen J, Hartiala J, Knuuti J: Clinical value of absolute quantification of myocardial perfusion with (15)O-water in coronary artery disease. Circ Cardiovasc Imaging. 2011, 4: 678-84. 10.1161/CIRCIMAGING.110.960732.CrossRefPubMed
7.
go back to reference Christian TF, Rettmann DW, Aletras AH, Liao SL, Taylor JL, Balaban RS, Arai AE: Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology. 2004, 232: 677-84. 10.1148/radiol.2323030573.CrossRefPubMed Christian TF, Rettmann DW, Aletras AH, Liao SL, Taylor JL, Balaban RS, Arai AE: Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology. 2004, 232: 677-84. 10.1148/radiol.2323030573.CrossRefPubMed
8.
go back to reference Parkka JP, Niemi P, Saraste A, Koskenvuo JW, Komu M, Oikonen V, Toikka JO, Kiviniemi TO, Knuuti J, Sakuma H, Hartiala JJ: Comparison of MRI and positron emission tomography for measuring myocardial perfusion reserve in healthy humans. Magn Reson Med. 2006, 55: 772-79. 10.1002/mrm.20833.CrossRefPubMed Parkka JP, Niemi P, Saraste A, Koskenvuo JW, Komu M, Oikonen V, Toikka JO, Kiviniemi TO, Knuuti J, Sakuma H, Hartiala JJ: Comparison of MRI and positron emission tomography for measuring myocardial perfusion reserve in healthy humans. Magn Reson Med. 2006, 55: 772-79. 10.1002/mrm.20833.CrossRefPubMed
9.
go back to reference Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A, Perera D, Knuuti J, Baker S, Hedstrom E, Schleyer P, O’Doherty M, Barrington S, Nagel E: Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol. 2012, 60: 1546-55. 10.1016/j.jacc.2012.05.052.CrossRefPubMed Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A, Perera D, Knuuti J, Baker S, Hedstrom E, Schleyer P, O’Doherty M, Barrington S, Nagel E: Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol. 2012, 60: 1546-55. 10.1016/j.jacc.2012.05.052.CrossRefPubMed
10.
go back to reference Hsu LY, Groves DW, Aletras AH, Kellman P, Arai AE: A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging: microsphere validation in dogs and feasibility study in humans. JACC Cardiovasc Imaging. 2012, 5: 154-66. 10.1016/j.jcmg.2011.07.013.PubMedCentralCrossRefPubMed Hsu LY, Groves DW, Aletras AH, Kellman P, Arai AE: A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging: microsphere validation in dogs and feasibility study in humans. JACC Cardiovasc Imaging. 2012, 5: 154-66. 10.1016/j.jcmg.2011.07.013.PubMedCentralCrossRefPubMed
11.
go back to reference Biglands J, Magee D, Boyle R, Larghat A, Plein S, Radjenovic A: Evaluation of the effect of myocardial segmentation errors on myocardial blood flow estimates from DCE-MRI. Phys Med Biol. 2011, 56: 2423-43. 10.1088/0031-9155/56/8/007.CrossRefPubMed Biglands J, Magee D, Boyle R, Larghat A, Plein S, Radjenovic A: Evaluation of the effect of myocardial segmentation errors on myocardial blood flow estimates from DCE-MRI. Phys Med Biol. 2011, 56: 2423-43. 10.1088/0031-9155/56/8/007.CrossRefPubMed
12.
go back to reference Laurent S, Elst LV, Muller RN: Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Media Mol Imaging. 2006, 1: 128-37. 10.1002/cmmi.100.CrossRefPubMed Laurent S, Elst LV, Muller RN: Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Media Mol Imaging. 2006, 1: 128-37. 10.1002/cmmi.100.CrossRefPubMed
13.
go back to reference Zierler KL: Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res. 1962, 10: 393-407. 10.1161/01.RES.10.3.393.CrossRef Zierler KL: Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res. 1962, 10: 393-407. 10.1161/01.RES.10.3.393.CrossRef
14.
go back to reference Axel L: Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Invest Radiol. 1983, 18: 94-9. 10.1097/00004424-198301000-00018.CrossRefPubMed Axel L: Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Invest Radiol. 1983, 18: 94-9. 10.1097/00004424-198301000-00018.CrossRefPubMed
15.
go back to reference Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med. 1996, 36: 715-25. 10.1002/mrm.1910360510.CrossRefPubMed Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med. 1996, 36: 715-25. 10.1002/mrm.1910360510.CrossRefPubMed
16.
go back to reference Calamante F, Gadian DG, Connelly A: Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke. 2002, 33: 1146-51. 10.1161/01.STR.0000014208.05597.33.CrossRefPubMed Calamante F, Gadian DG, Connelly A: Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke. 2002, 33: 1146-51. 10.1161/01.STR.0000014208.05597.33.CrossRefPubMed
17.
go back to reference Wirestam R, Andersson L, Ostergaard L, Bolling M, Aunola JP, Lindgren A, Geijer B, Holtas S, Stahlberg F: Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques. Magn Reson Med. 2000, 43: 691-700. 10.1002/(SICI)1522-2594(200005)43:5<691::AID-MRM11>3.0.CO;2-B.CrossRefPubMed Wirestam R, Andersson L, Ostergaard L, Bolling M, Aunola JP, Lindgren A, Geijer B, Holtas S, Stahlberg F: Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques. Magn Reson Med. 2000, 43: 691-700. 10.1002/(SICI)1522-2594(200005)43:5<691::AID-MRM11>3.0.CO;2-B.CrossRefPubMed
18.
go back to reference Hansen PC: Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. 1998, Philadelphia: SIAM PublicationsCrossRef Hansen PC: Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. 1998, Philadelphia: SIAM PublicationsCrossRef
19.
go back to reference Jerosch-Herold M, Swingen C, Seethamraju RT: Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys. 2002, 29: 886-97. 10.1118/1.1473135.CrossRefPubMed Jerosch-Herold M, Swingen C, Seethamraju RT: Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys. 2002, 29: 886-97. 10.1118/1.1473135.CrossRefPubMed
20.
go back to reference Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll HA, Selvanayagam JB, Neubauer S, Watkins H: Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation. 2007, 115: 2418-25. 10.1161/CIRCULATIONAHA.106.657023.CrossRefPubMed Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll HA, Selvanayagam JB, Neubauer S, Watkins H: Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation. 2007, 115: 2418-25. 10.1161/CIRCULATIONAHA.106.657023.CrossRefPubMed
21.
go back to reference Hansen PC: Regularization tools: a matlab package for analysis and solution of discrete ill-posed problems. Numerical Algorithms. 1994, 6: 1-35. 10.1007/BF02149761.CrossRef Hansen PC: Regularization tools: a matlab package for analysis and solution of discrete ill-posed problems. Numerical Algorithms. 1994, 6: 1-35. 10.1007/BF02149761.CrossRef
22.
go back to reference Lortie M, Beanlands RS, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA: Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging. 2007, 34: 1765-74. 10.1007/s00259-007-0478-2.CrossRefPubMed Lortie M, Beanlands RS, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA: Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging. 2007, 34: 1765-74. 10.1007/s00259-007-0478-2.CrossRefPubMed
23.
go back to reference Dekemp RA, Declerck J, Klein R, Pan XB, Nakazato R, Tonge C, Arumugam P, Berman DS, Germano G, Beanlands RS, Slomka PJ: Multisoftware reproducibility study of stress and rest myocardial blood flow assessed with 3D dynamic PET/CT and a 1-tissue-compartment model of 82-Rb kinetics. J Nucl Med. 2013, [Epub ahead of print] (No doi at the time of writing) Dekemp RA, Declerck J, Klein R, Pan XB, Nakazato R, Tonge C, Arumugam P, Berman DS, Germano G, Beanlands RS, Slomka PJ: Multisoftware reproducibility study of stress and rest myocardial blood flow assessed with 3D dynamic PET/CT and a 1-tissue-compartment model of 82-Rb kinetics. J Nucl Med. 2013, [Epub ahead of print] (No doi at the time of writing)
24.
go back to reference Bland JM, Altman DG: Calculating correlation coefficients with repeated observations: Part 1–Correlation within subjects. BMJ. 1995, 310: 446-10.1136/bmj.310.6977.446.PubMedCentralCrossRefPubMed Bland JM, Altman DG: Calculating correlation coefficients with repeated observations: Part 1–Correlation within subjects. BMJ. 1995, 310: 446-10.1136/bmj.310.6977.446.PubMedCentralCrossRefPubMed
25.
go back to reference Bland JM, Altman DG: Calculating correlation coefficients with repeated observations: part 2–correlation between subjects. BMJ. 1995, 310: 633-10.1136/bmj.310.6980.633.PubMedCentralCrossRefPubMed Bland JM, Altman DG: Calculating correlation coefficients with repeated observations: part 2–correlation between subjects. BMJ. 1995, 310: 633-10.1136/bmj.310.6980.633.PubMedCentralCrossRefPubMed
26.
go back to reference Christian TF, Aletras AH, Arai AE: Estimation of absolute myocardial blood flow during first-pass MR perfusion imaging using a dual-bolus injection technique: comparison to single-bolus injection method. J Magn Reson Imaging. 2008, 27: 1271-77. 10.1002/jmri.21383.CrossRefPubMed Christian TF, Aletras AH, Arai AE: Estimation of absolute myocardial blood flow during first-pass MR perfusion imaging using a dual-bolus injection technique: comparison to single-bolus injection method. J Magn Reson Imaging. 2008, 27: 1271-77. 10.1002/jmri.21383.CrossRefPubMed
27.
go back to reference Jerosch-Herold M, Wilke N, Stillman AE: Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys. 1998, 25: 73-84. 10.1118/1.598163.CrossRefPubMed Jerosch-Herold M, Wilke N, Stillman AE: Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys. 1998, 25: 73-84. 10.1118/1.598163.CrossRefPubMed
28.
go back to reference Pack NA, DiBella EVR: Comparison of myocardial perfusion estimates from dynamic contrast-enhanced magnetic resonance imaging with four quantitative analysis methods. Magn Reson Med. 2010, 64: 125-37. 10.1002/mrm.22282.PubMedCentralCrossRefPubMed Pack NA, DiBella EVR: Comparison of myocardial perfusion estimates from dynamic contrast-enhanced magnetic resonance imaging with four quantitative analysis methods. Magn Reson Med. 2010, 64: 125-37. 10.1002/mrm.22282.PubMedCentralCrossRefPubMed
29.
go back to reference Zarinabad N, Chiribiri A, Hautvast GLTF, Ishida M, Schuster A, Cvetkovic Z, Batchelor PG, Nagel E: Voxel-wise quantification of myocardial perfusion by cardiac magnetic resonance. Feasibility and methods comparison. Magn Reson Med. 2012, 68: 1994-2004. 10.1002/mrm.24195.CrossRefPubMed Zarinabad N, Chiribiri A, Hautvast GLTF, Ishida M, Schuster A, Cvetkovic Z, Batchelor PG, Nagel E: Voxel-wise quantification of myocardial perfusion by cardiac magnetic resonance. Feasibility and methods comparison. Magn Reson Med. 2012, 68: 1994-2004. 10.1002/mrm.24195.CrossRefPubMed
30.
go back to reference Fritz-Hansen T, Hove JD, Kofoed KF, Kelbaek H, Larsson HB: Quantification of MRI measured myocardial perfusion reserve in healthy humans: a comparison with positron emission tomography. J Magn Reson Imaging. 2008, 27: 818-24. 10.1002/jmri.21306.CrossRefPubMed Fritz-Hansen T, Hove JD, Kofoed KF, Kelbaek H, Larsson HB: Quantification of MRI measured myocardial perfusion reserve in healthy humans: a comparison with positron emission tomography. J Magn Reson Imaging. 2008, 27: 818-24. 10.1002/jmri.21306.CrossRefPubMed
31.
go back to reference Prior JO, Allenbach G, Valenta I, Kosinski M, Burger C, Verdun FR, Bischof Delaloye A, Kaufmann PA: Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15-O-water. Eur J Nucl Med Mol Imaging. 2012, 39: 1037-47. 10.1007/s00259-012-2082-3.PubMedCentralCrossRefPubMed Prior JO, Allenbach G, Valenta I, Kosinski M, Burger C, Verdun FR, Bischof Delaloye A, Kaufmann PA: Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15-O-water. Eur J Nucl Med Mol Imaging. 2012, 39: 1037-47. 10.1007/s00259-012-2082-3.PubMedCentralCrossRefPubMed
Metadata
Title
Voxel-wise quantification of myocardial blood flow with cardiovascular magnetic resonance: effect of variations in methodology and validation with positron emission tomography
Authors
Christopher A Miller
Josephine H Naish
Mark P Ainslie
Christine Tonge
Deborah Tout
Parthiban Arumugam
Anita Banerji
Robin M Egdell
David Clark
Peter Weale
Christopher D Steadman
Gerry P McCann
Simon G Ray
Geoffrey JM Parker
Matthias Schmitt
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2014
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/1532-429X-16-11

Other articles of this Issue 1/2014

Journal of Cardiovascular Magnetic Resonance 1/2014 Go to the issue