Skip to main content
Top
Published in: BMC Neurology 1/2017

Open Access 01-12-2017 | Research article

Voxel-wise correlations between cognition and cerebral blood flow using arterial spin-labeled perfusion MRI in patients with Alzheimer’s disease: a cross-sectional study

Authors: Tomohiro Kaneta, Omi Katsuse, Takamasa Hirano, Matsuyoshi Ogawa, Ayako Shihikura-Hino, Keisuke Yoshida, Toshinari Odawara, Yoshio Hirayasu, Tomio Inoue

Published in: BMC Neurology | Issue 1/2017

Login to get access

Abstract

Background

To analyze voxel-wise correlation between cerebral blood flow (CBF) measured using ASL-MRI and cognition in patients with Alzheimer’s disease (AD).

Methods

Forty-one patients diagnosed with AD or mild cognitive impairment due to AD were recruited for this study. CBF images were obtained using ASL-MRI (n = 41) with a post-labeling delay (PLD) of 1.5 and 2.5 s (PLD1.5 and PLD2.5, respectively) using a 3 T scanner, in addition to brain perfusion SPECT with N-isopropyl-4-[I-123]iodoamphetamine (n = 28). Voxel-based analyses were performed for ASL-MRI and SPECT using Mini-Mental State Examination (MMSE) scores as covariates. Differences in CBF between PLD1.5 and PLD2.5 were assessed using a paired t-test with SPM12.

Results

Significant positive correlations were observed between MMSE scores and CBF at PLD1.5 in the right posterior cingulate cortex (PCC), and both temporo-parietal association cortexes. At PLD2.5, significant positive correlations were determined for MMSE scores and CBF in the superior parietal lobule and the right temporo-parietal association cortex. SPECT showed significant positive correlations in the PCC and both temporo-parietal association cortexes (right-side dominant). PLD1.5 showed significantly higher CBF than PLD2.5 in the proximal areas of vascular territories of the anterior, middle, and posterior cerebral arteries.

Conclusions

Significant positive correlations in CBF, measured with both ASL-MRI and SPECT, with cognition were found in the PCC and temporo-parietal association cortexes. PLD1.5 and PLD2.5 showed similar correlations with cognition, although the CBF images had significant differences.
Literature
1.
go back to reference Jagust W, Thisted R, Devous MD Sr, et al. SPECT perfusion imaging in the diagnosis of Alzheimer’s disease: a clinical-pathologic study. Neurology. 2001;56:950–6.CrossRefPubMed Jagust W, Thisted R, Devous MD Sr, et al. SPECT perfusion imaging in the diagnosis of Alzheimer’s disease: a clinical-pathologic study. Neurology. 2001;56:950–6.CrossRefPubMed
2.
go back to reference Bonte FJ, Weiner MF, Bigio EH, White CL 3rd. Brain blood flow in the dementias: SPECT with histopathologic correlation in 54 patients. Radiology. 1997;202:793–7.CrossRefPubMed Bonte FJ, Weiner MF, Bigio EH, White CL 3rd. Brain blood flow in the dementias: SPECT with histopathologic correlation in 54 patients. Radiology. 1997;202:793–7.CrossRefPubMed
3.
4.
go back to reference Matsuda H. Role of neuroimaging in Alzheimer’s disease, with emphasis on brain perfusion SPECT. J Nucl Med. 2007;48:1289–300.CrossRefPubMed Matsuda H. Role of neuroimaging in Alzheimer’s disease, with emphasis on brain perfusion SPECT. J Nucl Med. 2007;48:1289–300.CrossRefPubMed
5.
go back to reference Imabayashi E, Matsuda H, Asada T, et al. Superiority of 3-dimensional stereotactic surface projection analysis over visual inspection in discrimination of patients with very early Alzheimer’s disease from controls using brain perfusion SPECT. J Nucl Med. 2004;45:1450–7.PubMed Imabayashi E, Matsuda H, Asada T, et al. Superiority of 3-dimensional stereotactic surface projection analysis over visual inspection in discrimination of patients with very early Alzheimer’s disease from controls using brain perfusion SPECT. J Nucl Med. 2004;45:1450–7.PubMed
6.
go back to reference Tang BN, Minoshima S, George J, et al. Diagnosis of suspected Alzheimer’s disease is improved by automated analysis of regional cerebral blood flow. Eur J Nucl Med Mol Imaging. 2004;31:1487–94.CrossRefPubMed Tang BN, Minoshima S, George J, et al. Diagnosis of suspected Alzheimer’s disease is improved by automated analysis of regional cerebral blood flow. Eur J Nucl Med Mol Imaging. 2004;31:1487–94.CrossRefPubMed
7.
go back to reference Dai W, Lopez OL, Carmichael OT, Becker JT, Kculler LH, Gach HM. Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology. 2009;250:856–66.CrossRefPubMedPubMedCentral Dai W, Lopez OL, Carmichael OT, Becker JT, Kculler LH, Gach HM. Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology. 2009;250:856–66.CrossRefPubMedPubMedCentral
8.
9.
go back to reference Johnson NA, Jahng GH, Weiner MW, et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology. 2005;234:851–9.CrossRefPubMedPubMedCentral Johnson NA, Jahng GH, Weiner MW, et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology. 2005;234:851–9.CrossRefPubMedPubMedCentral
10.
go back to reference Asllani I, Habeck C, Scarmeas N, Borogovac A, Brown TR, Stern Y. Multivariate and univariate analysis of continuous arterial spin labeling perfusion MRI in Alzheimer’s disease. J Cereb Blood Flow Metab. 2008;28:725–36.CrossRefPubMed Asllani I, Habeck C, Scarmeas N, Borogovac A, Brown TR, Stern Y. Multivariate and univariate analysis of continuous arterial spin labeling perfusion MRI in Alzheimer’s disease. J Cereb Blood Flow Metab. 2008;28:725–36.CrossRefPubMed
11.
go back to reference Alexopoulos P, Sorg C, Förschler A, et al. Perfusion abnormalities in mild cognitive impairment and mild dementia in Alzheimer’s disease measured by pulsed arterial spin labeling MRI. Eur Arch Psychiatry Clin Neurosci. 2012;262:69–77.CrossRefPubMed Alexopoulos P, Sorg C, Förschler A, et al. Perfusion abnormalities in mild cognitive impairment and mild dementia in Alzheimer’s disease measured by pulsed arterial spin labeling MRI. Eur Arch Psychiatry Clin Neurosci. 2012;262:69–77.CrossRefPubMed
12.
go back to reference Yoshiura T, Hiwatashi A, Noguchi T, et al. Arterial spin labelling at 3-T MR imaging for detection of individuals with Alzheimer’s disease. Eur Radiol. 2009;19:2819–25.CrossRefPubMed Yoshiura T, Hiwatashi A, Noguchi T, et al. Arterial spin labelling at 3-T MR imaging for detection of individuals with Alzheimer’s disease. Eur Radiol. 2009;19:2819–25.CrossRefPubMed
13.
go back to reference Mak HK, Chan Q, Zhang Z, et al. Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer’s disease and cognitively normal elderly adults at 3-tesla. J Alzheimers Dis. 2012;31:33–44.PubMed Mak HK, Chan Q, Zhang Z, et al. Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer’s disease and cognitively normal elderly adults at 3-tesla. J Alzheimers Dis. 2012;31:33–44.PubMed
14.
go back to reference Du AT, Jahng GH, Hayasaka S, et al. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology. 2006;67:1215–20.CrossRefPubMedPubMedCentral Du AT, Jahng GH, Hayasaka S, et al. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology. 2006;67:1215–20.CrossRefPubMedPubMedCentral
15.
go back to reference Steketee RM, Bron EE, Meijboom R, et al. Early-stage differentiation between presenile Alzheimer’s disease and frontotemporal dementia using arterial spin labeling MRI. Eur Radiol. 2016;26:244–53.CrossRefPubMed Steketee RM, Bron EE, Meijboom R, et al. Early-stage differentiation between presenile Alzheimer’s disease and frontotemporal dementia using arterial spin labeling MRI. Eur Radiol. 2016;26:244–53.CrossRefPubMed
16.
go back to reference Chen K, Langbaum JB, Fleisher AS, et al. Twelve-month metabolic declines in probable Alzheimer’s disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: findings from the Alzheimer’s Disease Neuroimaging Initiative. NeuroImage. 2010;51:654–64.CrossRefPubMedPubMedCentral Chen K, Langbaum JB, Fleisher AS, et al. Twelve-month metabolic declines in probable Alzheimer’s disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: findings from the Alzheimer’s Disease Neuroimaging Initiative. NeuroImage. 2010;51:654–64.CrossRefPubMedPubMedCentral
17.
go back to reference Musiek ES, Chen Y, Korczykowski M, et al. Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer’s disease. Alzheimers Dement. 2012;8:51–9.CrossRefPubMed Musiek ES, Chen Y, Korczykowski M, et al. Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer’s disease. Alzheimers Dement. 2012;8:51–9.CrossRefPubMed
18.
go back to reference Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73:102–16.CrossRefPubMed Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73:102–16.CrossRefPubMed
19.
go back to reference Chen Y, Wolk DA, Reddin JS, et al. Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology. 2011;77:1977–85.CrossRefPubMedPubMedCentral Chen Y, Wolk DA, Reddin JS, et al. Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology. 2011;77:1977–85.CrossRefPubMedPubMedCentral
20.
go back to reference Verclytte S, Lopes R, Lenfant P, et al. Cerebral hypoperfusion and hypometabolism detected by arterial spin labeling MRI and FDG-PET in early-onset Alzheimer’s disease. J Neuroimaging. 2016;26:207–12.CrossRefPubMed Verclytte S, Lopes R, Lenfant P, et al. Cerebral hypoperfusion and hypometabolism detected by arterial spin labeling MRI and FDG-PET in early-onset Alzheimer’s disease. J Neuroimaging. 2016;26:207–12.CrossRefPubMed
21.
go back to reference Binnewijzend MA, Kuijer JP, Benedictus MR, et al. Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology. 2013;267:221–30.CrossRefPubMed Binnewijzend MA, Kuijer JP, Benedictus MR, et al. Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology. 2013;267:221–30.CrossRefPubMed
22.
go back to reference McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Service Task Force on Alzheimer Disease. Neurology. 1984;34:939–44.CrossRefPubMed McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Service Task Force on Alzheimer Disease. Neurology. 1984;34:939–44.CrossRefPubMed
23.
go back to reference Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.CrossRefPubMed Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.CrossRefPubMed
24.
go back to reference Hatazawa J, Iida H, Shimosegawa E, Sato T, Murakami M, Miura Y. Regional cerebral blood flow measurement with iodine-123-IMP autoradiography: normal values, reproducibility and sensitivity to hypoperfusion. J Nucl Med. 1997;38:1102–8.PubMed Hatazawa J, Iida H, Shimosegawa E, Sato T, Murakami M, Miura Y. Regional cerebral blood flow measurement with iodine-123-IMP autoradiography: normal values, reproducibility and sensitivity to hypoperfusion. J Nucl Med. 1997;38:1102–8.PubMed
25.
go back to reference Pfefferbaum A, Chanraud S, Pitel A-L, et al. volumetric cerebral perfusion imaging in healthy adults: regional distribution, laterality, and repeatability of Pulsed Continuous Arterial Spin Labeling (PCASL). Psychiatry Res. 2010;182:266–73.CrossRefPubMedPubMedCentral Pfefferbaum A, Chanraud S, Pitel A-L, et al. volumetric cerebral perfusion imaging in healthy adults: regional distribution, laterality, and repeatability of Pulsed Continuous Arterial Spin Labeling (PCASL). Psychiatry Res. 2010;182:266–73.CrossRefPubMedPubMedCentral
26.
go back to reference Jovicich J, Czanner S, Greve D, et al. Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. NeuroImage. 2006;30:436–43.CrossRefPubMed Jovicich J, Czanner S, Greve D, et al. Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. NeuroImage. 2006;30:436–43.CrossRefPubMed
27.
go back to reference Swan A, Waddell B, Holloway G, et al. The diagnostic utility of 99mTc-HMPAO SPECT imaging: a retrospective case series from a tertiary referral early-onset cognitive disorders clinic. Dement Geriatr Cogn Disord. 2015;39:186–93.CrossRefPubMed Swan A, Waddell B, Holloway G, et al. The diagnostic utility of 99mTc-HMPAO SPECT imaging: a retrospective case series from a tertiary referral early-onset cognitive disorders clinic. Dement Geriatr Cogn Disord. 2015;39:186–93.CrossRefPubMed
28.
go back to reference de Souza LC, Lehéricy S, Dubois B, Stella F, Sarazin M. Neuroimaging in dementias. Curr Opin Psychiatry. 2012;5:473–9.CrossRef de Souza LC, Lehéricy S, Dubois B, Stella F, Sarazin M. Neuroimaging in dementias. Curr Opin Psychiatry. 2012;5:473–9.CrossRef
29.
go back to reference Langbaum JB, Chen K, Lee W, et al. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). NeuroImage. 2009;45:1107–16.CrossRefPubMedPubMedCentral Langbaum JB, Chen K, Lee W, et al. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). NeuroImage. 2009;45:1107–16.CrossRefPubMedPubMedCentral
30.
go back to reference Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32:486–510.CrossRefPubMed Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32:486–510.CrossRefPubMed
31.
go back to reference Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 2004;101:4637–42.CrossRefPubMedPubMedCentral Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 2004;101:4637–42.CrossRefPubMedPubMedCentral
32.
go back to reference Hampel H, Prvulovic D, Teipel SJ, Bokde AL. Recent developments of functional magnetic resonance imaging research for drug development in Alzheimer’s disease. Prog Neurobiol. 2011;95:570–8.CrossRefPubMed Hampel H, Prvulovic D, Teipel SJ, Bokde AL. Recent developments of functional magnetic resonance imaging research for drug development in Alzheimer’s disease. Prog Neurobiol. 2011;95:570–8.CrossRefPubMed
33.
go back to reference Buckner RL, Snyder AZ, Shannon BJ, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci. 2005;25:7709–17.CrossRefPubMed Buckner RL, Snyder AZ, Shannon BJ, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci. 2005;25:7709–17.CrossRefPubMed
34.
go back to reference Damoiseaux JS, Prater KE, Miller BL, Greicius MD. Functional connectivity tracks clinical deterioration in Alzheimer’s disease. Neurobiol Aging. 2012;33:828.e19–30.CrossRef Damoiseaux JS, Prater KE, Miller BL, Greicius MD. Functional connectivity tracks clinical deterioration in Alzheimer’s disease. Neurobiol Aging. 2012;33:828.e19–30.CrossRef
35.
go back to reference Liu Y, Zeng X, Wang Z, Zhang N, Fan D, Yuan H. Different post label delay cerebral blood flow measurements in patients with Alzheimer’s disease using 3D arterial spin labeling. Magn Reson Imaging. 2015;33:1019–25.CrossRefPubMed Liu Y, Zeng X, Wang Z, Zhang N, Fan D, Yuan H. Different post label delay cerebral blood flow measurements in patients with Alzheimer’s disease using 3D arterial spin labeling. Magn Reson Imaging. 2015;33:1019–25.CrossRefPubMed
36.
go back to reference Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995;36:1238–48.PubMed Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995;36:1238–48.PubMed
37.
go back to reference Matsuda H, Mizumura S, Nagao T, et al. Automated discrimination between very early Alzheimer disease and controls using an easy Z-score imaging system for multicenter brain perfusion single-photon emission tomography. AJNR Am J Neuroradiol. 2007;28:731–6. Matsuda H, Mizumura S, Nagao T, et al. Automated discrimination between very early Alzheimer disease and controls using an easy Z-score imaging system for multicenter brain perfusion single-photon emission tomography. AJNR Am J Neuroradiol. 2007;28:731–6.
38.
go back to reference Matsuda H, Mizumura S, Nagao T, et al. An easy Z-score imaging system for discrimination between very early Alzheimer's disease and controls using brain perfusion SPECT in a multicentre study. Nucl MedCommun. 2007;28:199–205. Matsuda H, Mizumura S, Nagao T, et al. An easy Z-score imaging system for discrimination between very early Alzheimer's disease and controls using brain perfusion SPECT in a multicentre study. Nucl MedCommun. 2007;28:199–205.
Metadata
Title
Voxel-wise correlations between cognition and cerebral blood flow using arterial spin-labeled perfusion MRI in patients with Alzheimer’s disease: a cross-sectional study
Authors
Tomohiro Kaneta
Omi Katsuse
Takamasa Hirano
Matsuyoshi Ogawa
Ayako Shihikura-Hino
Keisuke Yoshida
Toshinari Odawara
Yoshio Hirayasu
Tomio Inoue
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2017
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-017-0870-x

Other articles of this Issue 1/2017

BMC Neurology 1/2017 Go to the issue