Skip to main content
Top
Published in: Brain Structure and Function 1/2018

Open Access 01-01-2018 | Original Article

Volume electron microscopy of the distribution of synapses in the neuropil of the juvenile rat somatosensory cortex

Authors: A. Santuy, J. R. Rodriguez, J. DeFelipe, A. Merchan-Perez

Published in: Brain Structure and Function | Issue 1/2018

Login to get access

Abstract

Knowing the proportions of asymmetric (excitatory) and symmetric (inhibitory) synapses in the neuropil is critical for understanding the design of cortical circuits. We used focused ion beam milling and scanning electron microscopy (FIB/SEM) to obtain stacks of serial sections from the six layers of the juvenile rat (postnatal day 14) somatosensory cortex (hindlimb representation). We segmented in three-dimensions 6184 synaptic junctions and determined whether they were established on dendritic spines or dendritic shafts. Of all these synapses, 87–94% were asymmetric and 6–13% were symmetric. Asymmetric synapses were preferentially located on dendritic spines in all layers (80–91%) while symmetric synapses were mainly located on dendritic shafts (62–86%). Furthermore, we found that less than 6% of the dendritic spines establish more than one synapse. The vast majority of axospinous synapses were established on the spine head. Synapses on the spine neck were scarce, although they were more common when the dendritic spine established multiple synapses. This study provides a new large quantitative dataset that may contribute not only to the knowledge of the ultrastructure of the cortex, but also towards defining the connectivity patterns through all cortical layers.
Appendix
Available only for authorised users
Literature
go back to reference Alonso-Nanclares L, Gonzalez-Soriano J, Rodriguez JR, DeFelipe J (2008) Gender differences in human cortical synaptic density. Proc Natl Acad Sci USA 105:14615–14619CrossRefPubMedPubMedCentral Alonso-Nanclares L, Gonzalez-Soriano J, Rodriguez JR, DeFelipe J (2008) Gender differences in human cortical synaptic density. Proc Natl Acad Sci USA 105:14615–14619CrossRefPubMedPubMedCentral
go back to reference Anton-Sanchez L, Bielza C, Merchan-Perez A, Rodriguez JR, DeFelipe J, Larranaga P (2014) Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis. Front Neuroanat 8:85CrossRefPubMedPubMedCentral Anton-Sanchez L, Bielza C, Merchan-Perez A, Rodriguez JR, DeFelipe J, Larranaga P (2014) Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis. Front Neuroanat 8:85CrossRefPubMedPubMedCentral
go back to reference Arellano JI, Espinosa A, Fairen A, Yuste R, DeFelipe J (2007) Non-synaptic dendritic spines in neocortex. Neuroscience 145:464–469CrossRefPubMed Arellano JI, Espinosa A, Fairen A, Yuste R, DeFelipe J (2007) Non-synaptic dendritic spines in neocortex. Neuroscience 145:464–469CrossRefPubMed
go back to reference Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568CrossRefPubMed Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568CrossRefPubMed
go back to reference Beaulieu C, Colonnier M (1985) A laminar analysis of the number of round-asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. J Comp Neurol 231:180–189CrossRefPubMed Beaulieu C, Colonnier M (1985) A laminar analysis of the number of round-asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. J Comp Neurol 231:180–189CrossRefPubMed
go back to reference Beaulieu C, Somogyi P (1990) Targets and quantitative distribution of GABAergic synapses in the visual cortex of the cat. The European journal of neuroscience 2:896CrossRefPubMed Beaulieu C, Somogyi P (1990) Targets and quantitative distribution of GABAergic synapses in the visual cortex of the cat. The European journal of neuroscience 2:896CrossRefPubMed
go back to reference Bosch C, Martinez A, Masachs N, Teixeira CM, Fernaud I et al (2015) FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons. Front Neuroanat 9:60CrossRefPubMedPubMedCentral Bosch C, Martinez A, Masachs N, Teixeira CM, Fernaud I et al (2015) FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons. Front Neuroanat 9:60CrossRefPubMedPubMedCentral
go back to reference Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity. Springer, New York, p 272CrossRef Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity. Springer, New York, p 272CrossRef
go back to reference Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 9:268–287CrossRefPubMed Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 9:268–287CrossRefPubMed
go back to reference DeFelipe J (2011) The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front Neuroanat 5:29PubMedPubMedCentral DeFelipe J (2011) The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front Neuroanat 5:29PubMedPubMedCentral
go back to reference DeFelipe J (2015a) The anatomical problem posed by brain complexity and size: a potential solution. Front Neuroanat 9:104PubMedPubMedCentral DeFelipe J (2015a) The anatomical problem posed by brain complexity and size: a potential solution. Front Neuroanat 9:104PubMedPubMedCentral
go back to reference DeFelipe J, Fairen A (1993) A simple and reliable method for correlative light and electron microscopic studies. J Histochem Cytochem 41:769–772CrossRefPubMed DeFelipe J, Fairen A (1993) A simple and reliable method for correlative light and electron microscopic studies. J Histochem Cytochem 41:769–772CrossRefPubMed
go back to reference DeFelipe J, Fariñas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39:563–607CrossRefPubMed DeFelipe J, Fariñas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39:563–607CrossRefPubMed
go back to reference DeFelipe J, Jones EG (1988) A light and electron microscopic study of serotonin-immunoreactive fibers and terminals in the monkey sensory-motor cortex. Exp Brain Res 71:171–182CrossRefPubMed DeFelipe J, Jones EG (1988) A light and electron microscopic study of serotonin-immunoreactive fibers and terminals in the monkey sensory-motor cortex. Exp Brain Res 71:171–182CrossRefPubMed
go back to reference DeFelipe J, Hendry SH, Jones EG (1989) Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity. Brain Res 503:49–54CrossRefPubMed DeFelipe J, Hendry SH, Jones EG (1989) Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity. Brain Res 503:49–54CrossRefPubMed
go back to reference DeFelipe J, Hendry SH, Hashikawa T, Molinari M, Jones EG (1990) A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience 37:655–673CrossRefPubMed DeFelipe J, Hendry SH, Hashikawa T, Molinari M, Jones EG (1990) A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience 37:655–673CrossRefPubMed
go back to reference DeFelipe J, Marco P, Busturia I, Merchán-Pérez A (1999) Estimation of the number of synapses in the cerebral cortex: methodological considerations. Cereb Cortex 9:722–732CrossRefPubMed DeFelipe J, Marco P, Busturia I, Merchán-Pérez A (1999) Estimation of the number of synapses in the cerebral cortex: methodological considerations. Cereb Cortex 9:722–732CrossRefPubMed
go back to reference Descarries L, Mechawar N (2000) Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. In progress in brain research. Elsevier, Amsterdam. pp. 27–47 Descarries L, Mechawar N (2000) Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. In progress in brain research. Elsevier, Amsterdam. pp. 27–47
go back to reference Feldman ML (1984) Morphology of the neocortical pyramidal neuron. In Peters A, Jones EG (ed) Cerebral cortex, Plenum Press, New York. pp. 123–200 Feldman ML (1984) Morphology of the neocortical pyramidal neuron. In Peters A, Jones EG (ed) Cerebral cortex, Plenum Press, New York. pp. 123–200
go back to reference Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed
go back to reference Giese KP, Aziz W, Kraev I, Stewart MG (2015) Generation of multi-innervated dendritic spines as a novel mechanism of long-term memory formation. Neurobiol Learn Mem 124:48–51CrossRefPubMed Giese KP, Aziz W, Kraev I, Stewart MG (2015) Generation of multi-innervated dendritic spines as a novel mechanism of long-term memory formation. Neurobiol Learn Mem 124:48–51CrossRefPubMed
go back to reference Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433PubMedPubMedCentral Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433PubMedPubMedCentral
go back to reference Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371CrossRefPubMed Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371CrossRefPubMed
go back to reference Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12:2685–2705PubMed Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12:2685–2705PubMed
go back to reference Helmstaedter M (2013) Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nat Methods 10:501–507CrossRefPubMed Helmstaedter M (2013) Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nat Methods 10:501–507CrossRefPubMed
go back to reference Houser CR, Barber RP, Vaughn JE (1984) Immunocytochemical localization of glutamic acid decarboxylase in the dorsal lateral vestibular nucleus: evidence for an intrinsic and extrinsic GABAergic innervation. Neurosci Lett 47:213–220CrossRefPubMed Houser CR, Barber RP, Vaughn JE (1984) Immunocytochemical localization of glutamic acid decarboxylase in the dorsal lateral vestibular nucleus: evidence for an intrinsic and extrinsic GABAergic innervation. Neurosci Lett 47:213–220CrossRefPubMed
go back to reference Howard V, Reed MG (2005) Unbiased stereology: three-dimensional measurement in microscopy. Garland Science/BIOS Scientific Publishers, New York Howard V, Reed MG (2005) Unbiased stereology: three-dimensional measurement in microscopy. Garland Science/BIOS Scientific Publishers, New York
go back to reference Jones EG (1993) GABAergic neurons and their role in cortical plasticity in primates. Cereb Cortex 3:361–372CrossRefPubMed Jones EG (1993) GABAergic neurons and their role in cortical plasticity in primates. Cereb Cortex 3:361–372CrossRefPubMed
go back to reference Jones EG, Powell TPS (1969) Morphological variations in dendritic spines of neocortex. J Cell Sci 5:509PubMed Jones EG, Powell TPS (1969) Morphological variations in dendritic spines of neocortex. J Cell Sci 5:509PubMed
go back to reference Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA et al (2015) Saturated reconstruction of a volume of neocortex. Cell 162:648–661CrossRefPubMed Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA et al (2015) Saturated reconstruction of a volume of neocortex. Cell 162:648–661CrossRefPubMed
go back to reference Kawaguchi Y, Kubota Y (1998) Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience 85:677–701CrossRefPubMed Kawaguchi Y, Kubota Y (1998) Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience 85:677–701CrossRefPubMed
go back to reference Kisvarday ZF, Martin KA, Whitteridge D, Somogyi P (1985) Synaptic connections of intracellularly filled clutch cells: a type of small basket cell in the visual cortex of the cat. J Comp Neurol 241:111–137CrossRefPubMed Kisvarday ZF, Martin KA, Whitteridge D, Somogyi P (1985) Synaptic connections of intracellularly filled clutch cells: a type of small basket cell in the visual cortex of the cat. J Comp Neurol 241:111–137CrossRefPubMed
go back to reference Kisvarday ZF, Martin KA, Freund TF, Magloczky Z, Whitteridge D, Somogyi P (1986) Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex. Exp Brain Res 64:541–552CrossRefPubMed Kisvarday ZF, Martin KA, Freund TF, Magloczky Z, Whitteridge D, Somogyi P (1986) Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex. Exp Brain Res 64:541–552CrossRefPubMed
go back to reference Kisvarday ZF, Martin KA, Friedlander MJ, Somogyi P (1987) Evidence for interlaminar inhibitory circuits in the striate cortex of the cat. J Comp Neurol 260:1–19CrossRefPubMed Kisvarday ZF, Martin KA, Friedlander MJ, Somogyi P (1987) Evidence for interlaminar inhibitory circuits in the striate cortex of the cat. J Comp Neurol 260:1–19CrossRefPubMed
go back to reference Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28:2959–2964CrossRefPubMed Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28:2959–2964CrossRefPubMed
go back to reference Kreshuk A, Straehle CN, Sommer C, Koethe U, Cantoni M et al (2011) Automated detection and segmentation of synaptic contacts in nearly isotropic serial electron microscopy images. PLoS ONE 6:e24899CrossRefPubMedPubMedCentral Kreshuk A, Straehle CN, Sommer C, Koethe U, Cantoni M et al (2011) Automated detection and segmentation of synaptic contacts in nearly isotropic serial electron microscopy images. PLoS ONE 6:e24899CrossRefPubMedPubMedCentral
go back to reference Kubota Y, Hatada S, Kondo S, Karube F, Kawaguchi Y (2007) Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents. J Neurosci 27:1139–1150CrossRefPubMed Kubota Y, Hatada S, Kondo S, Karube F, Kawaguchi Y (2007) Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents. J Neurosci 27:1139–1150CrossRefPubMed
go back to reference Kubota Y, Kondo S, Nomura M, Hatada S, Yamaguchi N et al (2015) Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons. Elife 4:e07919CrossRefPubMedCentral Kubota Y, Kondo S, Nomura M, Hatada S, Yamaguchi N et al (2015) Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons. Elife 4:e07919CrossRefPubMedCentral
go back to reference Larkman AU (1991) Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions. J Comp Neurol 306:332–343CrossRefPubMed Larkman AU (1991) Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions. J Comp Neurol 306:332–343CrossRefPubMed
go back to reference Markov NT, Misery P, Falchier A, Lamy C, Vezoli J et al (2011) Weight consistency specifies regularities of macaque cortical networks. Cereb Cortex 21:1254–1272CrossRefPubMed Markov NT, Misery P, Falchier A, Lamy C, Vezoli J et al (2011) Weight consistency specifies regularities of macaque cortical networks. Cereb Cortex 21:1254–1272CrossRefPubMed
go back to reference Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M et al (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163:456–492CrossRefPubMed Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M et al (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163:456–492CrossRefPubMed
go back to reference Merchan-Perez A, Rodriguez JR, Alonso-Nanclares L, Schertel A, DeFelipe J (2009) Counting synapses using FIB/SEM microscopy: a true revolution for ultrastructural volume reconstruction. Front Neuroanat 3:14CrossRef Merchan-Perez A, Rodriguez JR, Alonso-Nanclares L, Schertel A, DeFelipe J (2009) Counting synapses using FIB/SEM microscopy: a true revolution for ultrastructural volume reconstruction. Front Neuroanat 3:14CrossRef
go back to reference Merchan-Perez A, Rodriguez JR, Gonzalez S, Robles V, Defelipe J et al (2014) Three-dimensional spatial distribution of synapses in the neocortex: a dual-beam electron microscopy study. Cereb Cortex 24:1579–1588CrossRefPubMed Merchan-Perez A, Rodriguez JR, Gonzalez S, Robles V, Defelipe J et al (2014) Three-dimensional spatial distribution of synapses in the neocortex: a dual-beam electron microscopy study. Cereb Cortex 24:1579–1588CrossRefPubMed
go back to reference Micheva KD, Beaulieu C (1996) Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J Comp Neurol 373:340–354CrossRefPubMed Micheva KD, Beaulieu C (1996) Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J Comp Neurol 373:340–354CrossRefPubMed
go back to reference Morales J, Alonso-Nanclares L, Rodriguez J-R, Defelipe J, Rodriguez A, Merchan-Perez A (2011) Espina: a tool for the automated segmentation and counting of synapses in large stacks of electron microscopy images. Front Neuroanat 5:18CrossRefPubMedPubMedCentral Morales J, Alonso-Nanclares L, Rodriguez J-R, Defelipe J, Rodriguez A, Merchan-Perez A (2011) Espina: a tool for the automated segmentation and counting of synapses in large stacks of electron microscopy images. Front Neuroanat 5:18CrossRefPubMedPubMedCentral
go back to reference Morales J, Rodriguez A, Rodriguez JR, DeFelipe J, Merchan-Perez A (2013) Characterization and extraction of the synaptic apposition surface for synaptic geometry analysis. Front Neuroanat 7:10CrossRef Morales J, Rodriguez A, Rodriguez JR, DeFelipe J, Merchan-Perez A (2013) Characterization and extraction of the synaptic apposition surface for synaptic geometry analysis. Front Neuroanat 7:10CrossRef
go back to reference Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press, Cambridge Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press, Cambridge
go back to reference Petrak LJ, Harris KM, Kirov SA (2005) Synaptogenesis on mature hippocampal dendrites occurs via filopodia and immature spines during blocked synaptic transmission. J Comp Neurol 484:183–190CrossRefPubMed Petrak LJ, Harris KM, Kirov SA (2005) Synaptogenesis on mature hippocampal dendrites occurs via filopodia and immature spines during blocked synaptic transmission. J Comp Neurol 484:183–190CrossRefPubMed
go back to reference Popov VI, Deev AA, Klimenko OA, Kraev IV, Kuz’minykh SB et al (2005) Three-dimensional reconstruction of synapses and dendritic spines in the rat and ground squirrel hippocampus: new structural-functional paradigms for synaptic function. Neurosci Behav Physiol 35:333–341CrossRefPubMed Popov VI, Deev AA, Klimenko OA, Kraev IV, Kuz’minykh SB et al (2005) Three-dimensional reconstruction of synapses and dendritic spines in the rat and ground squirrel hippocampus: new structural-functional paradigms for synaptic function. Neurosci Behav Physiol 35:333–341CrossRefPubMed
go back to reference Radwanska K, Medvedev NI, Pereira GS, Engmann O, Thiede N et al (2011) Mechanism for long-term memory formation when synaptic strengthening is impaired. Proc Natl Acad Sci USA 108:18471–18475CrossRefPubMedPubMedCentral Radwanska K, Medvedev NI, Pereira GS, Engmann O, Thiede N et al (2011) Mechanism for long-term memory formation when synaptic strengthening is impaired. Proc Natl Acad Sci USA 108:18471–18475CrossRefPubMedPubMedCentral
go back to reference Schüz A, Palm G (1989) Density of neurons and synapses in the cerebral cortex of the mouse. J Comp Neurol 286:442–455CrossRefPubMed Schüz A, Palm G (1989) Density of neurons and synapses in the cerebral cortex of the mouse. J Comp Neurol 286:442–455CrossRefPubMed
go back to reference Silberberg G (2008) Polysynaptic subcircuits in the neocortex: spatial and temporal diversity. Curr Opin Neurobiol 18:332–337CrossRefPubMed Silberberg G (2008) Polysynaptic subcircuits in the neocortex: spatial and temporal diversity. Curr Opin Neurobiol 18:332–337CrossRefPubMed
go back to reference Somogyi P, Cowey A (1981) Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey. J Comp Neurol 195:547–566CrossRefPubMed Somogyi P, Cowey A (1981) Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey. J Comp Neurol 195:547–566CrossRefPubMed
go back to reference Somogyi P, Kisvarday ZF, Martin KA, Whitteridge D (1983) Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience 10:261–294CrossRefPubMed Somogyi P, Kisvarday ZF, Martin KA, Whitteridge D (1983) Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience 10:261–294CrossRefPubMed
go back to reference Somogyi P, Tamas G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26:113–135CrossRefPubMed Somogyi P, Tamas G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26:113–135CrossRefPubMed
go back to reference Wang Y, Toledo-Rodriguez M, Gupta A, Wu C, Silberberg G et al (2004) Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J Physiol 561:65–90CrossRefPubMedPubMedCentral Wang Y, Toledo-Rodriguez M, Gupta A, Wu C, Silberberg G et al (2004) Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J Physiol 561:65–90CrossRefPubMedPubMedCentral
go back to reference White EL, Keller A (1989) Cortical circuits: synaptic organization of the cerebral cortex. Structure, function and theory. Birkhäuser, BostonCrossRef White EL, Keller A (1989) Cortical circuits: synaptic organization of the cerebral cortex. Structure, function and theory. Birkhäuser, BostonCrossRef
Metadata
Title
Volume electron microscopy of the distribution of synapses in the neuropil of the juvenile rat somatosensory cortex
Authors
A. Santuy
J. R. Rodriguez
J. DeFelipe
A. Merchan-Perez
Publication date
01-01-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1470-7

Other articles of this Issue 1/2018

Brain Structure and Function 1/2018 Go to the issue