Skip to main content
Top
Published in: Experimental Hematology & Oncology 1/2014

Open Access 01-12-2014 | Research

Vitamin D3 potentiates the antitumorigenic effects of arsenic trioxide in human leukemia (HL-60) cells

Authors: Christian S Rogers, Clement G Yedjou, Dwayne J Sutton, Paul B Tchounwou

Published in: Experimental Hematology & Oncology | Issue 1/2014

Login to get access

Abstract

Background

Arsenic trioxide (ATO) is a novel form of therapy that has been found to aid acute promyelocytic leukemia (APL) patients. Our laboratory has demonstrated that ATO-induced cytotoxicity in human leukemia (HL-60) cells is mediated by oxidative stress. Pro-oxidants have been known to play a role in free radical-mediated oxidative stress. Vitamin D3, (Vit D3) an active metabolite of vitamin D has been reported to inhibit the growth of number neoplasms such as prostate, breast, colorectal, leukemia, and skin cancers. The goal of the present research was to use (HL-60) cells as an in vitro test model to evaluate whether low doses of Vit D3 potentiate the toxicity of ATO and whether this toxic action is mediated via apoptotic mechanisms.

Method

HL-60 cells were treated either with a pharmacologic dose of ATO alone and with several low doses of Vit D3. Cell survival was determined by MTT assay. Cell apoptosis was measured both by flow cytometry assessment, and DNA laddering assay.

Results

MTT assay indicated that Vit D3 co-treatment potentiates ATO toxicity in HL-60 cells in a dose dependent manner. A statistically significant and dose-dependent increase (p <0.05) was recorded in annexin V positive cells (apoptotic cells) with increasing doses of Vit D3 in ATO-treated cells. This finding was confirmed by the result of DNA laddering assay showing clear evidence of nucleosomal DNA fragmentation in vitamin and ATO co-treated cells.

Conclusion

The present study indicates that Vit D3 potentiates the antitumor effects of ATO. This potentiation is mediated at least in part, through induction of phosphatidylserine externalization and nucleosomal DNA fragmentation. These findings highlight the potential impact of Vit D3 in promoting the pharmacological effect of ATO, suggesting a possible future role of Vit D3/ATO combination therapy in patients with acute promyelocytic leukemia (APL).
Appendix
Available only for authorised users
Literature
1.
go back to reference Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ, Corso D, DeBlasio A, Gabrilove J, Scheinberg DA, Pandolfi PP, Warrell RP: Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 1998, 339: 1341–1348. 10.1056/NEJM199811053391901PubMedCrossRef Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ, Corso D, DeBlasio A, Gabrilove J, Scheinberg DA, Pandolfi PP, Warrell RP: Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 1998, 339: 1341–1348. 10.1056/NEJM199811053391901PubMedCrossRef
2.
go back to reference Soignet SL, Frankel SR, Douer D, Tallman MS, Kantarjian H, Calleja E, Stone RM, Kalaycio M, Scheinberg DA, Steinherz P, Sievers EL, Coutré S, Dahlberg S, Ellison R, Warrell RP Jr: United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J Clin Oncol 2001, 19: 3852–3860.PubMed Soignet SL, Frankel SR, Douer D, Tallman MS, Kantarjian H, Calleja E, Stone RM, Kalaycio M, Scheinberg DA, Steinherz P, Sievers EL, Coutré S, Dahlberg S, Ellison R, Warrell RP Jr: United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J Clin Oncol 2001, 19: 3852–3860.PubMed
3.
go back to reference Chen GQ, Zhu J, Shi XG, Ni JN, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM, Shen ZX, Sun GL, Ma J, Zhang P, Zhang TD, Gazin C, Naoe T, Chen SJ, Wang ZY, Chen Z: In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR/PML proteins. Blood 1996, 88: 1052–1061.PubMed Chen GQ, Zhu J, Shi XG, Ni JN, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM, Shen ZX, Sun GL, Ma J, Zhang P, Zhang TD, Gazin C, Naoe T, Chen SJ, Wang ZY, Chen Z: In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR/PML proteins. Blood 1996, 88: 1052–1061.PubMed
4.
go back to reference Rousselot P, Labaume S, Marolleau JP, Larghero J, Noguera MH, Brouet JC, Fermand JP: Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients. Cancer Res 1999, 59: 1041–1048.PubMed Rousselot P, Labaume S, Marolleau JP, Larghero J, Noguera MH, Brouet JC, Fermand JP: Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients. Cancer Res 1999, 59: 1041–1048.PubMed
5.
go back to reference Shen L, Chen TX, Wang YP, Lin Z, Zhao HJ, Zu YZ, Wu G, Ying DM: Arsenic trioxide induced apoptosis of the human B lymphoma cell line MBC-1. J Biol Regulat Homeost Agent 2000, 14: 116–119. Shen L, Chen TX, Wang YP, Lin Z, Zhao HJ, Zu YZ, Wu G, Ying DM: Arsenic trioxide induced apoptosis of the human B lymphoma cell line MBC-1. J Biol Regulat Homeost Agent 2000, 14: 116–119.
6.
go back to reference Wang QM, Jones JB, Studzinski GP: Cyclin-dependent kinase Inhibitor p27 as a mediator of the G1-S phase block induced by 1,25-dihydroxyvitamin D3 in HL60 cells. Cancer Res 1996, 56: 264.PubMed Wang QM, Jones JB, Studzinski GP: Cyclin-dependent kinase Inhibitor p27 as a mediator of the G1-S phase block induced by 1,25-dihydroxyvitamin D3 in HL60 cells. Cancer Res 1996, 56: 264.PubMed
7.
go back to reference Chen YC, Lin-Shiau SY, Lin JK: Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 1998, 177: 324–333. 10.1002/(SICI)1097-4652(199811)177:2<324::AID-JCP14>3.0.CO;2-9PubMedCrossRef Chen YC, Lin-Shiau SY, Lin JK: Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 1998, 177: 324–333. 10.1002/(SICI)1097-4652(199811)177:2<324::AID-JCP14>3.0.CO;2-9PubMedCrossRef
8.
go back to reference Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S: Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 1999, 94: 2102–2111.PubMed Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S: Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 1999, 94: 2102–2111.PubMed
9.
go back to reference Huang HS, Chang WC, Chen CJ: Involvement of reactive oxygen species in arsenite-induced downregulation of phospholipid hydroperoxide glutathione peroxidase in human epidermoid carcinoma A431 cells. Free Radic Biol Med 2002, 33: 864–873. 10.1016/S0891-5849(02)00983-8PubMedCrossRef Huang HS, Chang WC, Chen CJ: Involvement of reactive oxygen species in arsenite-induced downregulation of phospholipid hydroperoxide glutathione peroxidase in human epidermoid carcinoma A431 cells. Free Radic Biol Med 2002, 33: 864–873. 10.1016/S0891-5849(02)00983-8PubMedCrossRef
10.
go back to reference Yedjou CG, Tchounwou PB: In vitro cytotoxic and genotoxic effects of arsenic trioxide on human leukemia (HL-60) cells using the MTT and alkaline single cell gel electrophoresis (comet) assays. Mol Cell Biochem 2007, 301: 123–130. 10.1007/s11010-006-9403-4PubMedCentralPubMedCrossRef Yedjou CG, Tchounwou PB: In vitro cytotoxic and genotoxic effects of arsenic trioxide on human leukemia (HL-60) cells using the MTT and alkaline single cell gel electrophoresis (comet) assays. Mol Cell Biochem 2007, 301: 123–130. 10.1007/s11010-006-9403-4PubMedCentralPubMedCrossRef
11.
go back to reference Mellanby E: An experimental investigation on rickets. Lancet 1919,193(4985):407–412.CrossRef Mellanby E: An experimental investigation on rickets. Lancet 1919,193(4985):407–412.CrossRef
12.
go back to reference Napoli JL, Fivizzani MA, Schnoes HK, DeLuca HF: Synthesis of vitamin D5: its biological activity relative to D3 and D2. Arch Biochem Biophys 1979, 197: 119–125. 10.1016/0003-9861(79)90226-1PubMedCrossRef Napoli JL, Fivizzani MA, Schnoes HK, DeLuca HF: Synthesis of vitamin D5: its biological activity relative to D3 and D2. Arch Biochem Biophys 1979, 197: 119–125. 10.1016/0003-9861(79)90226-1PubMedCrossRef
13.
go back to reference Banach-Petrosky W, Ouyang X, Gao H, Nader K, Ji Y, Suh N, DiPaola RS, Abate-Shen C: Vitamin D inhibits the formation of prostatic intraepithelial neoplasia in Nkx3.1;Pten mutant mice. Clin Cancer Res 2006, 12: 5895–5901. 10.1158/1078-0432.CCR-06-1039PubMedCrossRef Banach-Petrosky W, Ouyang X, Gao H, Nader K, Ji Y, Suh N, DiPaola RS, Abate-Shen C: Vitamin D inhibits the formation of prostatic intraepithelial neoplasia in Nkx3.1;Pten mutant mice. Clin Cancer Res 2006, 12: 5895–5901. 10.1158/1078-0432.CCR-06-1039PubMedCrossRef
14.
go back to reference Trump DL, Deeb K, Johnson CS: Vitamin D: Considerations in the continued development as an agent for cancer prevention and therapy. Cancer J 2010,16(1):1–9. 10.1097/PPO.0b013e3181c51ee6PubMedCentralPubMedCrossRef Trump DL, Deeb K, Johnson CS: Vitamin D: Considerations in the continued development as an agent for cancer prevention and therapy. Cancer J 2010,16(1):1–9. 10.1097/PPO.0b013e3181c51ee6PubMedCentralPubMedCrossRef
15.
go back to reference Yedjou C, Tchounwou PB, Jenkins J, McMurray R: Basic mechanisms of arsenic trioxide (ATO)-induced apoptosis in human leukemia (HL-60). J. Hematol Oncol 2010, 3: 28. 10.1186/1756-8722-3-28PubMedCentralPubMedCrossRef Yedjou C, Tchounwou PB, Jenkins J, McMurray R: Basic mechanisms of arsenic trioxide (ATO)-induced apoptosis in human leukemia (HL-60). J. Hematol Oncol 2010, 3: 28. 10.1186/1756-8722-3-28PubMedCentralPubMedCrossRef
16.
go back to reference Thorne J, Campbell MJ: The vitamin D receptor in cancer. Proc Nutr Soc 2008,67(2):115–127. 10.1017/S0029665108006964PubMedCrossRef Thorne J, Campbell MJ: The vitamin D receptor in cancer. Proc Nutr Soc 2008,67(2):115–127. 10.1017/S0029665108006964PubMedCrossRef
17.
go back to reference Moreno J, Krishnan AV, Feldman D: Molecular mechanisms mediating the antiproliferative effects of vitamin D in prostate cancer. J Steroid Biochem Mol Biol 2005,97(1–2):31–36.PubMedCrossRef Moreno J, Krishnan AV, Feldman D: Molecular mechanisms mediating the antiproliferative effects of vitamin D in prostate cancer. J Steroid Biochem Mol Biol 2005,97(1–2):31–36.PubMedCrossRef
18.
go back to reference Deeb KK, Trump DL, Johnson CS: Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 2007,7(9):684–700. 10.1038/nrc2196PubMedCrossRef Deeb KK, Trump DL, Johnson CS: Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 2007,7(9):684–700. 10.1038/nrc2196PubMedCrossRef
19.
go back to reference Tchounwou PB, Yedjou CG, Dorsey WC: Arsenic trioxide induced transcriptional activation and expression of stress genes in human liver carcinoma cells (HepG2). Cellular and Molecular Biology™ 2003,49(7):1071–1079. Tchounwou PB, Yedjou CG, Dorsey WC: Arsenic trioxide induced transcriptional activation and expression of stress genes in human liver carcinoma cells (HepG2). Cellular and Molecular Biology™ 2003,49(7):1071–1079.
20.
go back to reference Yedjou CG, Thuisseu LD, Tchounwou CK, Gomes M, Howard C, Tchounwou PB: Ascorbic acid potentiation of arsenic trioxide anticancer activity against acute promyelocytic leukemia. Archives of Drug Information 2009,2(4):59–65. 10.1111/j.1753-5174.2009.00022.xPubMedCentralPubMedCrossRef Yedjou CG, Thuisseu LD, Tchounwou CK, Gomes M, Howard C, Tchounwou PB: Ascorbic acid potentiation of arsenic trioxide anticancer activity against acute promyelocytic leukemia. Archives of Drug Information 2009,2(4):59–65. 10.1111/j.1753-5174.2009.00022.xPubMedCentralPubMedCrossRef
21.
go back to reference Norman AW, Roth J, Orci L: The vitamin D endocrine system: steroid metabolism, hormone receptors and biological response (calcium binding proteins). Endocr Rev 1982, 3: 331–366. 10.1210/edrv-3-4-331PubMedCrossRef Norman AW, Roth J, Orci L: The vitamin D endocrine system: steroid metabolism, hormone receptors and biological response (calcium binding proteins). Endocr Rev 1982, 3: 331–366. 10.1210/edrv-3-4-331PubMedCrossRef
22.
go back to reference Henry HL, Norman AW: Vitamin D: metabolism and biological actions. Annu Rev Nutr 1984, 4: 493–498. 10.1146/annurev.nu.04.070184.002425PubMedCrossRef Henry HL, Norman AW: Vitamin D: metabolism and biological actions. Annu Rev Nutr 1984, 4: 493–498. 10.1146/annurev.nu.04.070184.002425PubMedCrossRef
23.
go back to reference Gysemans CA, Cardozo AK, Callewaert H: 1,25- Dihydroxyvitamin D3 modulates expression of chemokines and cytokines in pancreatic islets: implications for prevention of diabetes in nonobese diabetic mice. Endocrinology 1956–1964, 2005: 146. Gysemans CA, Cardozo AK, Callewaert H: 1,25- Dihydroxyvitamin D3 modulates expression of chemokines and cytokines in pancreatic islets: implications for prevention of diabetes in nonobese diabetic mice. Endocrinology 1956–1964, 2005: 146.
24.
go back to reference Abe E, Miyaura C, Sakagami H, Takeda M, Konno K, Yamazaki T, Yoshiki S, Suda T: Differentiation of mouse myeloid leukemia cells induced by 1,25-dihydroxyvitamin D3. Proceedings of the National Academy of Sciences of the United States of America, Volume 78 1981, 4990–4994. Abe E, Miyaura C, Sakagami H, Takeda M, Konno K, Yamazaki T, Yoshiki S, Suda T: Differentiation of mouse myeloid leukemia cells induced by 1,25-dihydroxyvitamin D3. Proceedings of the National Academy of Sciences of the United States of America, Volume 78 1981, 4990–4994.
25.
go back to reference Wyllie AH: Apoptosis and carcinogenesis. Eur J Cell Biol 1997, 73: 189.PubMed Wyllie AH: Apoptosis and carcinogenesis. Eur J Cell Biol 1997, 73: 189.PubMed
26.
go back to reference Rudel T, Bokoch GM: Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 1997, 276: 1571. 10.1126/science.276.5318.1571PubMedCrossRef Rudel T, Bokoch GM: Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 1997, 276: 1571. 10.1126/science.276.5318.1571PubMedCrossRef
27.
go back to reference Dive C, Evans CA, Whetton AD: Induction of apoptosis-new targets for cancer chemotherapy. Semin Cancer Biol 1992, 3: 417.PubMed Dive C, Evans CA, Whetton AD: Induction of apoptosis-new targets for cancer chemotherapy. Semin Cancer Biol 1992, 3: 417.PubMed
28.
go back to reference Sachs L, Lotem J: Control of programmed cell death in normal and leukemic cells: new implications for therapy. Blood 1993, 82: 15.PubMed Sachs L, Lotem J: Control of programmed cell death in normal and leukemic cells: new implications for therapy. Blood 1993, 82: 15.PubMed
Metadata
Title
Vitamin D3 potentiates the antitumorigenic effects of arsenic trioxide in human leukemia (HL-60) cells
Authors
Christian S Rogers
Clement G Yedjou
Dwayne J Sutton
Paul B Tchounwou
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Experimental Hematology & Oncology / Issue 1/2014
Electronic ISSN: 2162-3619
DOI
https://doi.org/10.1186/2162-3619-3-9

Other articles of this Issue 1/2014

Experimental Hematology & Oncology 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine