Skip to main content
Top
Published in: Acta Neurochirurgica 7/2018

01-07-2018 | Technical Note - Brain Tumors

Visualizing protoporphyrin IX formation in the dura tail of meningiomas by mass spectrometry imaging

Authors: Benjamin Brokinkel, Sabrina Kröger, Volker Senner, Astrid Jeibmann, Uwe Karst, Walter Stummer

Published in: Acta Neurochirurgica | Issue 7/2018

Login to get access

Abstract

Background

The advantages of 5-aminolevulinacid (5-ALA)-induced fluorescence-guided surgery in meningiomas are increasingly discussed. In this context, despite detectable tumor tissue in histopathologial analyses, no fluorescence was shown at the dura tail using the standard operating microscope. Thus, 5-ALA metabolism in this surgically important site remains unknown but needs to be elucidated when further evaluating indications of fluorescence-guided surgery in meningiomas.

Method

We here present the spatially resolved identification of protoporphyrin IX (PpIX) in sphenoid ridge meningioma cryosections from a patient who underwent fluorescence-guided microsurgery using molecular imaging analysis by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS).

Results

Despite a strong fluorescence of the main tumor, no fluorescence could be detected at the dura tail using the standard operating microscope (blue-light, 405 nm). However, histopathological analyses clearly showed meningioma tissue. Remarkably, MALDI-MS/MS analysis revealed PpIX formation also at the non-fluorescing dura tail. However, no PpIX was detected in the tumor free dura mater.

Conclusion

MALDI-MS/MS visualized a selective accumulation of PpIX within the tumor tissue including the dura tail. Thus, absence of fluorescence in the dura tail as visualized by the operating microscope is not caused by the lack of PpIX formation.
Literature
1.
go back to reference Brokinkel B, Hess K, Mawrin C (2017) Brain invasion in meningiomas-clinical considerations and impact of neuropathological evaluation: a systematic review. Neuro-Oncology 19:1298–1307CrossRefPubMedPubMedCentral Brokinkel B, Hess K, Mawrin C (2017) Brain invasion in meningiomas-clinical considerations and impact of neuropathological evaluation: a systematic review. Neuro-Oncology 19:1298–1307CrossRefPubMedPubMedCentral
3.
go back to reference Greer T, Sturm R, Li L (2011) Mass spectrometry imaging for drugs and metabolites. J Proteome 74:2617–2631CrossRef Greer T, Sturm R, Li L (2011) Mass spectrometry imaging for drugs and metabolites. J Proteome 74:2617–2631CrossRef
4.
go back to reference Hagiya Y, Fukuhara H, Matsumoto K, Endo Y, Nakajima M, Tanaka T, Okura I, Kurabayashi A, Furihata M, Inoue K, Shuin T, Ogura S (2013) Expression levels of PEPT1 and ABCG2 play key roles in 5-aminolevulinic acid (ALA)-induced tumor-specific protoporphyrin IX (PpIX) accumulation in bladder cancer. Photodiagn Photodyn Ther 10:288–295CrossRef Hagiya Y, Fukuhara H, Matsumoto K, Endo Y, Nakajima M, Tanaka T, Okura I, Kurabayashi A, Furihata M, Inoue K, Shuin T, Ogura S (2013) Expression levels of PEPT1 and ABCG2 play key roles in 5-aminolevulinic acid (ALA)-induced tumor-specific protoporphyrin IX (PpIX) accumulation in bladder cancer. Photodiagn Photodyn Ther 10:288–295CrossRef
5.
go back to reference Hefti M, Holenstein F, Albert I, Looser H, Luginbuehl V (2011) Susceptibility to 5-aminolevulinic acid based photodynamic therapy in WHO I meningioma cells corresponds to ferrochelatase activity. Photochem Photobiol 87:235–241CrossRefPubMed Hefti M, Holenstein F, Albert I, Looser H, Luginbuehl V (2011) Susceptibility to 5-aminolevulinic acid based photodynamic therapy in WHO I meningioma cells corresponds to ferrochelatase activity. Photochem Photobiol 87:235–241CrossRefPubMed
6.
7.
go back to reference Millesi M, Kiesel B, Mischkulnig M, Martinez-Moreno M, Wohrer A, Wolfsberger S, Knosp E, Widhalm G (2016) Analysis of the surgical benefits of 5-ALA-induced fluorescence in intracranial meningiomas: experience in 204 meningiomas. J Neurosurg 125:1408–1419CrossRefPubMed Millesi M, Kiesel B, Mischkulnig M, Martinez-Moreno M, Wohrer A, Wolfsberger S, Knosp E, Widhalm G (2016) Analysis of the surgical benefits of 5-ALA-induced fluorescence in intracranial meningiomas: experience in 204 meningiomas. J Neurosurg 125:1408–1419CrossRefPubMed
8.
go back to reference Motekallemi A, Jeltema HR, Metzemaekers JD, van Dam GM, Crane LM, Groen RJ (2015) The current status of 5-ALA fluorescence-guided resection of intracranial meningiomas-a critical review. Neurosurg Rev 38:619–628CrossRefPubMedPubMedCentral Motekallemi A, Jeltema HR, Metzemaekers JD, van Dam GM, Crane LM, Groen RJ (2015) The current status of 5-ALA fluorescence-guided resection of intracranial meningiomas-a critical review. Neurosurg Rev 38:619–628CrossRefPubMedPubMedCentral
9.
go back to reference Peyre M, Clermont-Taranchon E, Stemmer-Rachamimov A, Kalamarides M (2013) Miniaturized handheld confocal microscopy identifies focal brain invasion in a mouse model of aggressive meningioma. Brain Pathol 23:371–377CrossRefPubMed Peyre M, Clermont-Taranchon E, Stemmer-Rachamimov A, Kalamarides M (2013) Miniaturized handheld confocal microscopy identifies focal brain invasion in a mouse model of aggressive meningioma. Brain Pathol 23:371–377CrossRefPubMed
10.
go back to reference Sanai N, Snyder LA, Honea NJ, Coons SW, Eschbacher JM, Smith KA, Spetzler RF (2011) Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. J Neurosurg 115:740–748CrossRefPubMed Sanai N, Snyder LA, Honea NJ, Coons SW, Eschbacher JM, Smith KA, Spetzler RF (2011) Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. J Neurosurg 115:740–748CrossRefPubMed
12.
go back to reference Teng L, Nakada M, Zhao SG, Endo Y, Furuyama N, Nambu E, Pyko IV, Hayashi Y, Hamada JI (2011) Silencing of ferrochelatase enhances 5-aminolevulinic acid-based fluorescence and photodynamic therapy efficacy. Br J Cancer 104:798–807CrossRefPubMedPubMedCentral Teng L, Nakada M, Zhao SG, Endo Y, Furuyama N, Nambu E, Pyko IV, Hayashi Y, Hamada JI (2011) Silencing of ferrochelatase enhances 5-aminolevulinic acid-based fluorescence and photodynamic therapy efficacy. Br J Cancer 104:798–807CrossRefPubMedPubMedCentral
13.
go back to reference Yang X, Palasuberniam P, Kraus D, Chen B (2015) Aminolevulinic acid-based tumor detection and therapy: molecular mechanisms and strategies for enhancement. Int J Mol Sci 16:25865–25880CrossRefPubMedPubMedCentral Yang X, Palasuberniam P, Kraus D, Chen B (2015) Aminolevulinic acid-based tumor detection and therapy: molecular mechanisms and strategies for enhancement. Int J Mol Sci 16:25865–25880CrossRefPubMedPubMedCentral
14.
go back to reference Zhao SG, Chen XF, Wang LG, Yang G, Han DY, Teng L, Yang MC, Wang DY, Shi C, Liu YH, Zheng BJ, Shi CB, Gao X, Rainov NG (2013) Increased expression of ABCB6 enhances protoporphyrin IX accumulation and photodynamic effect in human glioma. Ann Surg Oncol 20:4379–4388CrossRefPubMed Zhao SG, Chen XF, Wang LG, Yang G, Han DY, Teng L, Yang MC, Wang DY, Shi C, Liu YH, Zheng BJ, Shi CB, Gao X, Rainov NG (2013) Increased expression of ABCB6 enhances protoporphyrin IX accumulation and photodynamic effect in human glioma. Ann Surg Oncol 20:4379–4388CrossRefPubMed
Metadata
Title
Visualizing protoporphyrin IX formation in the dura tail of meningiomas by mass spectrometry imaging
Authors
Benjamin Brokinkel
Sabrina Kröger
Volker Senner
Astrid Jeibmann
Uwe Karst
Walter Stummer
Publication date
01-07-2018
Publisher
Springer Vienna
Published in
Acta Neurochirurgica / Issue 7/2018
Print ISSN: 0001-6268
Electronic ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-018-3488-x

Other articles of this Issue 7/2018

Acta Neurochirurgica 7/2018 Go to the issue