Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 2/2023

01-02-2023 | Original Article

Visualizing Collagen Fibrils in the Cochlea’s Tectorial and Basilar Membranes Using a Fluorescently Labeled Collagen-Binding Protein Fragment

Authors: Raquel de Sousa Lobo Ferreira Querido, Xiang Ji, Rabina Lakha, Richard J. Goodyear, Guy P. Richardson, Christina L. Vizcarra, Elizabeth S. Olson

Published in: Journal of the Association for Research in Otolaryngology | Issue 2/2023

Login to get access

Abstract

Purpose

A probe that binds to unfixed collagen fibrils was used to image the shapes and fibrous properties of the TM and BM. The probe (CNA35) is derived from the bacterial adhesion protein CNA. We present confocal images of hydrated gerbil TM, BM, and other cochlear structures stained with fluorescently labeled CNA35. A primary purpose of this article is to describe the use of the CNA35 collagen probe in the cochlea.

Methods

Recombinant poly-histidine-tagged CNA35 was expressed in Escherichia coli, purified by cobalt-affinity chromatography, fluorescence labeled, and further purified by gel filtration chromatography. Cochleae from freshly harvested gerbil bullae were irrigated with and then incubated in CNA35 for periods ranging from 2 h — overnight. The cochleae were fixed, decalcified, and dissected. Isolated cochlear turns were imaged by confocal microscopy.

Results

The CNA35 probe stained the BM and TM, and volumetric imaging revealed the shape of these structures and the collagen fibrils within them. The limbal zone of the TM stained intensely. In samples from the cochlear base, intense staining was detected on the side of the TM that faces hair cells. In the BM pectinate zone, staining was intense at the upper and lower boundaries. The BM arcuate zone was characterized by a prominent longitudinal collagenous structure. The spiral ligament, limbus and lamina stained for collagen, and within the spiral limbus the habenula perforata were outlined with intense staining.

Conclusion

The CNA35 probe provides a unique and useful view of collagenous structures in the cochlea.
Appendix
Available only for authorised users
Literature
1.
go back to reference Davis H (1958) A mechano-electric theory of cochlear action. Ann Otol Rhinol Laryngology 67:789-801 Davis H (1958) A mechano-electric theory of cochlear action. Ann Otol Rhinol Laryngology 67:789-801
2.
go back to reference Lamb JS, Chadwick RS (2011) Dual traveling waves in an inner ear model with two degrees of freedom. PRL 107(088101):1–4 Lamb JS, Chadwick RS (2011) Dual traveling waves in an inner ear model with two degrees of freedom. PRL 107(088101):1–4
3.
go back to reference Nankali A, Wang Y, Strimbu CE, Olson ES, Grosh K (2020) A role for tectorial membrane mechanics in activating the cochlear amplifier. Sci Rep 10(17620):1–15 Nankali A, Wang Y, Strimbu CE, Olson ES, Grosh K (2020) A role for tectorial membrane mechanics in activating the cochlear amplifier. Sci Rep 10(17620):1–15
4.
go back to reference Goodyear RJ, Lu X, Deans MR, Richardson GP (2017) A tectorin-based matrix and planar cell polarity genes are required for normal collagen-fibril orientation in the developing tectorial membrane. Development 144:3978–3989 Goodyear RJ, Lu X, Deans MR, Richardson GP (2017) A tectorin-based matrix and planar cell polarity genes are required for normal collagen-fibril orientation in the developing tectorial membrane. Development 144:3978–3989
5.
go back to reference Killick R, Legan PK, Malenczak C, Richardson GP (1995) Molecular cloning of chick β-tectorin, an extracellular matrix molecule of the inner ear. J Cell Biol 129:535–547PubMedCrossRef Killick R, Legan PK, Malenczak C, Richardson GP (1995) Molecular cloning of chick β-tectorin, an extracellular matrix molecule of the inner ear. J Cell Biol 129:535–547PubMedCrossRef
6.
go back to reference Legan PK, Lukashkina VA, Goodyear RJ, Kössl M, Russell IJ, Richardson GP (2000) A targeted deletion in α-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron 28:273–285PubMedCrossRef Legan PK, Lukashkina VA, Goodyear RJ, Kössl M, Russell IJ, Richardson GP (2000) A targeted deletion in α-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron 28:273–285PubMedCrossRef
7.
go back to reference Gueta R, Tal E, Silberberg Y, Rousso I (2007) The 3D structure of the tectorial membrane determined by second-harmonic imaging microscopy. J Structural Bio 159(1):103–110CrossRef Gueta R, Tal E, Silberberg Y, Rousso I (2007) The 3D structure of the tectorial membrane determined by second-harmonic imaging microscopy. J Structural Bio 159(1):103–110CrossRef
8.
go back to reference Gueta R, Levitt J, Xia A, Katz O, Oghalai JS, Rousso I (2011) Structural and mechanical analysis of tectorial membrane tecta mutants. Biophys J 100:2530–2538PubMedPubMedCentralCrossRef Gueta R, Levitt J, Xia A, Katz O, Oghalai JS, Rousso I (2011) Structural and mechanical analysis of tectorial membrane tecta mutants. Biophys J 100:2530–2538PubMedPubMedCentralCrossRef
9.
go back to reference Lim DJ (1972) Fine morphology of the tectorial membrane: its relationship to the organ of Corti. Arch Otolaryngology 96:199–215CrossRef Lim DJ (1972) Fine morphology of the tectorial membrane: its relationship to the organ of Corti. Arch Otolaryngology 96:199–215CrossRef
10.
go back to reference Kimura RS (1966) Hairs of the cochlear sensory cells and their attachment to the tectorial membrane. Acta Oto Laryngologica 61:55–72PubMedCrossRef Kimura RS (1966) Hairs of the cochlear sensory cells and their attachment to the tectorial membrane. Acta Oto Laryngologica 61:55–72PubMedCrossRef
11.
go back to reference Hakizimana P, Fridberger A (2021) Inner hair cell stereocilia are embedded in the tectorial membrane. Nature Comm 12:2604CrossRef Hakizimana P, Fridberger A (2021) Inner hair cell stereocilia are embedded in the tectorial membrane. Nature Comm 12:2604CrossRef
12.
go back to reference Dreiling FJ, Henson MM, Henson OW Jr (2002) The presence and arrangement of type II collagen in the basilar membrane. Hear Res 166:166–180PubMedCrossRef Dreiling FJ, Henson MM, Henson OW Jr (2002) The presence and arrangement of type II collagen in the basilar membrane. Hear Res 166:166–180PubMedCrossRef
13.
go back to reference Amma LL, Goodyear R, Faris JS, Jones I, Ng L, Richardson G, Forrest D (2003) An emilin family extracellular matrix protein identified in the cochlear basilar membrane. Mol Cell Neurosci 23(3):460–472PubMedCrossRef Amma LL, Goodyear R, Faris JS, Jones I, Ng L, Richardson G, Forrest D (2003) An emilin family extracellular matrix protein identified in the cochlear basilar membrane. Mol Cell Neurosci 23(3):460–472PubMedCrossRef
14.
go back to reference Russell IJ, Lukashkina VA, Levic S, Cho Y-W, Lukashkin AN, Ng L, Forrest D (2020) Emilin 2 promotes the mechanical gradient of the cochlear basilar membrane and resolution of frequencies in sound. Sci Adv 6(eaba2634):1–13 Russell IJ, Lukashkina VA, Levic S, Cho Y-W, Lukashkin AN, Ng L, Forrest D (2020) Emilin 2 promotes the mechanical gradient of the cochlear basilar membrane and resolution of frequencies in sound. Sci Adv 6(eaba2634):1–13
15.
go back to reference Schweitzer L, Lutz C, Hobbs M, Weaver SP (1996) Anatomical correlates of the passive properties underlying the developmental shift in the frequency map of the mammalian cochlea. Hear Res 97:84–94PubMedCrossRef Schweitzer L, Lutz C, Hobbs M, Weaver SP (1996) Anatomical correlates of the passive properties underlying the developmental shift in the frequency map of the mammalian cochlea. Hear Res 97:84–94PubMedCrossRef
16.
go back to reference Plassman W, Peetz W, Schmidt M (1987) The cochlea in gerbilline rodents. Brain Behav Evol 30:82–102CrossRef Plassman W, Peetz W, Schmidt M (1987) The cochlea in gerbilline rodents. Brain Behav Evol 30:82–102CrossRef
17.
go back to reference Wada H, Sugawara M, Kobayashi T, Hozawa K, Takasaka T (1998) Measurement of guinea pig basilar membrane using computer-aided three-dimensional reconstruction system. Hear Res 120:1–6PubMedCrossRef Wada H, Sugawara M, Kobayashi T, Hozawa K, Takasaka T (1998) Measurement of guinea pig basilar membrane using computer-aided three-dimensional reconstruction system. Hear Res 120:1–6PubMedCrossRef
18.
go back to reference Liu W, Atturo F, Aldaya R, Santi P, Cureoglu S, Obwegeser S, Glueckert R, Pfaller K, Schrott-Fisher A, Rask-Andersen H (2015) Macromolecular organization and fine structure of the human basilar membrane - relevance for cochlear implantation. Cell Tissue Res 360:245–262PubMedPubMedCentralCrossRef Liu W, Atturo F, Aldaya R, Santi P, Cureoglu S, Obwegeser S, Glueckert R, Pfaller K, Schrott-Fisher A, Rask-Andersen H (2015) Macromolecular organization and fine structure of the human basilar membrane - relevance for cochlear implantation. Cell Tissue Res 360:245–262PubMedPubMedCentralCrossRef
19.
go back to reference Steele CR (1972) Behavior of the basilar membrane with pure-tone excitation JASA 55:148–162 Steele CR (1972) Behavior of the basilar membrane with pure-tone excitation JASA 55:148–162
20.
go back to reference Olson ES, Mountain DC (1991) In vivo measurement of basilar membrane stiffness. JASA 89:1262–1274CrossRef Olson ES, Mountain DC (1991) In vivo measurement of basilar membrane stiffness. JASA 89:1262–1274CrossRef
21.
go back to reference Tsuprun V, Santi P (1999) Ultrastructure and immunohistochemical identification of the extracellular matrix of the chinchilla cochlea. Hear Res 129:35–49PubMedCrossRef Tsuprun V, Santi P (1999) Ultrastructure and immunohistochemical identification of the extracellular matrix of the chinchilla cochlea. Hear Res 129:35–49PubMedCrossRef
22.
go back to reference Edge RM, Evans BN, Pearce M, Richter CP, Hu X, Dallos P (1998) Morphology of the unfixed cochlea. Hear Res 124:1–16PubMedCrossRef Edge RM, Evans BN, Pearce M, Richter CP, Hu X, Dallos P (1998) Morphology of the unfixed cochlea. Hear Res 124:1–16PubMedCrossRef
23.
go back to reference Krahn KN, Bouten CVC, Van Tuijl S, Van Zandvoort MAMJ, Merkx M (2006) Fluorescently labeled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture. Anal Biochem 350:177–185PubMedCrossRef Krahn KN, Bouten CVC, Van Tuijl S, Van Zandvoort MAMJ, Merkx M (2006) Fluorescently labeled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture. Anal Biochem 350:177–185PubMedCrossRef
24.
go back to reference Aper SJ, van Spreeuwel AC, van Turnhout MC, van der Linden AJ, Pieters PA, van der Zon NL, de la Rambelje SL, Bouten CV, Merkx M (2014) Colorful protein-based fluorescent probes for collagen imaging. PloS ONE 9(12):e114983 Aper SJ, van Spreeuwel AC, van Turnhout MC, van der Linden AJ, Pieters PA, van der Zon NL, de la Rambelje SL, Bouten CV, Merkx M (2014) Colorful protein-based fluorescent probes for collagen imaging. PloS ONE 9(12):e114983
25.
go back to reference Rubbens MP, Driessen-Mol A, Boerboom RA, Koppert MMJ, van Assen HC et al (2009) Quantification of the temporal evolution of collagen orientation in mechanically conditioned engineered cardiovascular tissues. Ann Biomed Eng 37:1263–1272PubMedPubMedCentralCrossRef Rubbens MP, Driessen-Mol A, Boerboom RA, Koppert MMJ, van Assen HC et al (2009) Quantification of the temporal evolution of collagen orientation in mechanically conditioned engineered cardiovascular tissues. Ann Biomed Eng 37:1263–1272PubMedPubMedCentralCrossRef
26.
go back to reference Sellon JB, Ghaffari R, Farrahi S, Richardson GP, Freeman DM (2014) Porosity controls spread of excitation in tectorial membrane traveling waves. Biophys J 106:1406–1413PubMedPubMedCentralCrossRef Sellon JB, Ghaffari R, Farrahi S, Richardson GP, Freeman DM (2014) Porosity controls spread of excitation in tectorial membrane traveling waves. Biophys J 106:1406–1413PubMedPubMedCentralCrossRef
27.
go back to reference Zong Y, Xu Y, Liang X, Keene DR, Höök A, Gurusiddappa S, Höök M, Narayana SVL (2005) A “Collagen Hug” model for staphylococcus aureus CNA binding to collagen. EMBO J 24:4224–4236PubMedPubMedCentralCrossRef Zong Y, Xu Y, Liang X, Keene DR, Höök A, Gurusiddappa S, Höök M, Narayana SVL (2005) A “Collagen Hug” model for staphylococcus aureus CNA binding to collagen. EMBO J 24:4224–4236PubMedPubMedCentralCrossRef
28.
go back to reference Mohammadkhah N, Simms CK, Murphy P (2017) Visualisation of collagen in fixed skeletal muscle tissue using fluorescently tagged collagen binding protein CNA35. J Mech Behav Biomed Mater 66:37–44CrossRef Mohammadkhah N, Simms CK, Murphy P (2017) Visualisation of collagen in fixed skeletal muscle tissue using fluorescently tagged collagen binding protein CNA35. J Mech Behav Biomed Mater 66:37–44CrossRef
29.
go back to reference Montgomery SC, Cox BC (2016) Whole mount dissection and immunofluorescence of the adult mouse cochlea. J Vis Exp 107:e53561 Montgomery SC, Cox BC (2016) Whole mount dissection and immunofluorescence of the adult mouse cochlea. J Vis Exp 107:e53561
30.
go back to reference Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682PubMedCrossRef Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682PubMedCrossRef
31.
go back to reference Lukashkin AN, Legan PK, Weddell TD, Lukashina VA, Goodyear RJ, Welstead LJ, Petit C, Russell IJ, Richardson GP (2012) A mouse model for human deafness DFNB22 reveals that hearing impairment is due to a loss of inner hair cell stimulation. PNAS 109:19351–19356PubMedPubMedCentralCrossRef Lukashkin AN, Legan PK, Weddell TD, Lukashina VA, Goodyear RJ, Welstead LJ, Petit C, Russell IJ, Richardson GP (2012) A mouse model for human deafness DFNB22 reveals that hearing impairment is due to a loss of inner hair cell stimulation. PNAS 109:19351–19356PubMedPubMedCentralCrossRef
32.
go back to reference Kapuria S, Steele CR, Puria S (2017) Unraveling the mystery of hearing in gerbil and other rodents with an arch-beam model of the basilar membrane. Sci Rep 7:228PubMedPubMedCentralCrossRef Kapuria S, Steele CR, Puria S (2017) Unraveling the mystery of hearing in gerbil and other rodents with an arch-beam model of the basilar membrane. Sci Rep 7:228PubMedPubMedCentralCrossRef
33.
go back to reference Santi PA, Aldaya R, Brown A, Johnson S, Stromback T, Cureoglu S, Rask-Andersen H (2016) Scanning electron microscopic examination of the extracellular matrix in the decellularized mouse and human cochlea. JARO 17:159–171PubMedPubMedCentralCrossRef Santi PA, Aldaya R, Brown A, Johnson S, Stromback T, Cureoglu S, Rask-Andersen H (2016) Scanning electron microscopic examination of the extracellular matrix in the decellularized mouse and human cochlea. JARO 17:159–171PubMedPubMedCentralCrossRef
34.
go back to reference Slepecky NB, Savage JE, Cefaratti LK, Yoo TJ (1992) Electron-microscopic localization of type II, IX, and V collagen in the organ of Corti of the gerbil. Cell Tissue Res 267:413–418PubMedCrossRef Slepecky NB, Savage JE, Cefaratti LK, Yoo TJ (1992) Electron-microscopic localization of type II, IX, and V collagen in the organ of Corti of the gerbil. Cell Tissue Res 267:413–418PubMedCrossRef
35.
go back to reference Müller M (1996) The cochlear place-frequency map of the adult and developing mongolian gerbil. Hear Res 94:148–156PubMedCrossRef Müller M (1996) The cochlear place-frequency map of the adult and developing mongolian gerbil. Hear Res 94:148–156PubMedCrossRef
36.
go back to reference Müller M, von Hünerbein K, Hoidis S, Smolders JWT (2005) A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73PubMedCrossRef Müller M, von Hünerbein K, Hoidis S, Smolders JWT (2005) A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73PubMedCrossRef
37.
go back to reference Goodyear RJ, Richardson GP (2017) Structure, function, and development of the tectorial membrane: an extracellular matrix essential for hearing. Curr Top Dev Biol 130:217–224CrossRef Goodyear RJ, Richardson GP (2017) Structure, function, and development of the tectorial membrane: an extracellular matrix essential for hearing. Curr Top Dev Biol 130:217–224CrossRef
38.
go back to reference Zhou W, Jabeen T, Sabha S, Becker J, Nam J-H (2022) Deiters cells act as mechanical equalizers for outer hair cells. J Neuroscience 42:8361–8372PubMedCrossRef Zhou W, Jabeen T, Sabha S, Becker J, Nam J-H (2022) Deiters cells act as mechanical equalizers for outer hair cells. J Neuroscience 42:8361–8372PubMedCrossRef
39.
go back to reference Chan WX, Yoon Y-J (2015) Effects of basilar membrane arch and radial tension on the travelling wave in gerbil cochlea. Hear Res 327:136–142PubMedCrossRef Chan WX, Yoon Y-J (2015) Effects of basilar membrane arch and radial tension on the travelling wave in gerbil cochlea. Hear Res 327:136–142PubMedCrossRef
40.
go back to reference Henson MM (1978) The basilar membrane of the bat, Pteronotus p. parnellii. Am J Anat 153:143–157 Henson MM (1978) The basilar membrane of the bat, Pteronotus p. parnellii. Am J Anat 153:143–157
41.
go back to reference Yoon Y-J, Steele CR, Puria S (2011) Feed-forward and feed-backward amplification model from cochlear cytoarchitecture: an interspecies comparison. Biophys J 100:1–10PubMedPubMedCentralCrossRef Yoon Y-J, Steele CR, Puria S (2011) Feed-forward and feed-backward amplification model from cochlear cytoarchitecture: an interspecies comparison. Biophys J 100:1–10PubMedPubMedCentralCrossRef
42.
go back to reference Meaud J, Grosh K (2010) The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics. JASA 127:1411–1421CrossRef Meaud J, Grosh K (2010) The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics. JASA 127:1411–1421CrossRef
43.
44.
go back to reference Olson ES, Mountain DC (1994) Mapping the cochlear partition’s stiffness to its cellular architecture. JASA 95:395–400CrossRef Olson ES, Mountain DC (1994) Mapping the cochlear partition’s stiffness to its cellular architecture. JASA 95:395–400CrossRef
45.
go back to reference Nosikova YS, Santerre JP, Grynpas M, Gibson G, Kandel RA (2012) Characterization of the annulus fibrosus-vertebral body interface: identification of new structural features. J Anat 221:577–589PubMedPubMedCentralCrossRef Nosikova YS, Santerre JP, Grynpas M, Gibson G, Kandel RA (2012) Characterization of the annulus fibrosus-vertebral body interface: identification of new structural features. J Anat 221:577–589PubMedPubMedCentralCrossRef
Metadata
Title
Visualizing Collagen Fibrils in the Cochlea’s Tectorial and Basilar Membranes Using a Fluorescently Labeled Collagen-Binding Protein Fragment
Authors
Raquel de Sousa Lobo Ferreira Querido
Xiang Ji
Rabina Lakha
Richard J. Goodyear
Guy P. Richardson
Christina L. Vizcarra
Elizabeth S. Olson
Publication date
01-02-2023
Publisher
Springer US
Published in
Journal of the Association for Research in Otolaryngology / Issue 2/2023
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-023-00889-z

Other articles of this Issue 2/2023

Journal of the Association for Research in Otolaryngology 2/2023 Go to the issue