Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Visualization of risk of radiogenic second cancer in the organs and tissues of the human body

Authors: Rui Zhang, Dragan Mirkovic, Wayne D Newhauser

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Background

Radiogenic second cancer is a common late effect in long term cancer survivors. Currently there are few methods or tools available to visually evaluate the spatial distribution of risks of radiogenic late effects in the human body. We developed a risk visualization method and demonstrated it for radiogenic second cancers in tissues and organs of one patient treated with photon volumetric modulated arc therapy and one patient treated with proton craniospinal irradiation.

Methods

Treatment plans were generated using radiotherapy treatment planning systems (TPS) and dose information was obtained from TPS. Linear non-threshold risk coefficients for organs at risk of second cancer incidence were taken from the Biological Effects of Ionization Radiation VII report. Alternative risk models including linear exponential model and linear plateau model were also examined. The predicted absolute lifetime risk distributions were visualized together with images of the patient anatomy.

Results

The risk distributions of second cancer for the two patients were visually presented. The risk distributions varied with tissue, dose, dose-risk model used, and the risk distribution could be similar to or very different from the dose distribution.

Conclusions

Our method provides a convenient way to directly visualize and evaluate the risks of radiogenic second cancer in organs and tissues of the human body. In the future, visual assessment of risk distribution could be an influential determinant for treatment plan scoring.
Literature
1.
go back to reference Armstrong GT, Stovall M, Robison LL. Long-term effects of radiation exposure among adult survivors of childhood cancer: results from the Childhood Cancer Survivor Study. Radiat Res. 2010;174:840–50.PubMedCentralPubMedCrossRef Armstrong GT, Stovall M, Robison LL. Long-term effects of radiation exposure among adult survivors of childhood cancer: results from the Childhood Cancer Survivor Study. Radiat Res. 2010;174:840–50.PubMedCentralPubMedCrossRef
2.
go back to reference Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355:1572–82.PubMedCrossRef Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355:1572–82.PubMedCrossRef
3.
go back to reference Robison LL, Armstrong GT, Boice JD, Chow EJ, Davies SM, Donaldson SS, et al. The childhood cancer survivor study: a national cancer institute-supported resource for outcome and intervention research. J Clin Oncol. 2009;27:2308–18.PubMedCentralPubMedCrossRef Robison LL, Armstrong GT, Boice JD, Chow EJ, Davies SM, Donaldson SS, et al. The childhood cancer survivor study: a national cancer institute-supported resource for outcome and intervention research. J Clin Oncol. 2009;27:2308–18.PubMedCentralPubMedCrossRef
4.
go back to reference Valdivieso M, Kujawa AM, Jones T, Baker LH. Cancer survivors in the united states: a review of the literature and a call to action. Int J Med Sci. 2012;9:163–73.PubMedCentralPubMedCrossRef Valdivieso M, Kujawa AM, Jones T, Baker LH. Cancer survivors in the united states: a review of the literature and a call to action. Int J Med Sci. 2012;9:163–73.PubMedCentralPubMedCrossRef
6.
go back to reference Wood ME, Vogel V, Ng A, Foxhall L, Goodwin P, Travis LB. Second malignant neoplasms: assessment and strategies for risk reduction. J Clin Oncol. 2012;30:3734–45.PubMedCrossRef Wood ME, Vogel V, Ng A, Foxhall L, Goodwin P, Travis LB. Second malignant neoplasms: assessment and strategies for risk reduction. J Clin Oncol. 2012;30:3734–45.PubMedCrossRef
7.
go back to reference Tubiana M. Can we reduce the incidence of second primary malignancies occurring after radiotherapy? A critical review. Radiother Oncol. 2009;91:4–15. discussion 11-13.PubMedCrossRef Tubiana M. Can we reduce the incidence of second primary malignancies occurring after radiotherapy? A critical review. Radiother Oncol. 2009;91:4–15. discussion 11-13.PubMedCrossRef
8.
go back to reference Newhauser W. Complexity of advanced radiation therapy necessitates multidisciplinary inquiry into dose reconstruction and risk assessment. Phys Med Biol. 2010;55, e01.CrossRef Newhauser W. Complexity of advanced radiation therapy necessitates multidisciplinary inquiry into dose reconstruction and risk assessment. Phys Med Biol. 2010;55, e01.CrossRef
9.
go back to reference Wu Q, Mohan R, Morris M, Lauve A, Schmidt-Ullrich R. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: dosimetric results. Int J Radiat Oncol, Biol, Phys. 2003;56:573–85.CrossRef Wu Q, Mohan R, Morris M, Lauve A, Schmidt-Ullrich R. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: dosimetric results. Int J Radiat Oncol, Biol, Phys. 2003;56:573–85.CrossRef
10.
go back to reference Feuvret L, Noel G, Mazeron JJ, Bey P. Conformity index: a review. Int J Radiat Oncol, Biol, Phys. 2006;64:333–42.CrossRef Feuvret L, Noel G, Mazeron JJ, Bey P. Conformity index: a review. Int J Radiat Oncol, Biol, Phys. 2006;64:333–42.CrossRef
11.
go back to reference Lyman JT. Complication probability as assessed from dose-volume histograms. Radiat Res Suppl. 1985;8:S13–9.PubMedCrossRef Lyman JT. Complication probability as assessed from dose-volume histograms. Radiat Res Suppl. 1985;8:S13–9.PubMedCrossRef
12.
go back to reference Brenner DJ. Dose, volume, and tumor-control predictions in radiotherapy. Int J Radiat Oncol, Biol, Phys. 1993;26:171–9.CrossRef Brenner DJ. Dose, volume, and tumor-control predictions in radiotherapy. Int J Radiat Oncol, Biol, Phys. 1993;26:171–9.CrossRef
13.
go back to reference Newhauser WD, Fontenot JD, Mahajan A, Kornguth D, Stovall M, Zheng Y, et al. The risk of developing a second cancer after receiving craniospinal proton irradiation. Phys Med Biol. 2009;54:2277–91.PubMedCentralPubMedCrossRef Newhauser WD, Fontenot JD, Mahajan A, Kornguth D, Stovall M, Zheng Y, et al. The risk of developing a second cancer after receiving craniospinal proton irradiation. Phys Med Biol. 2009;54:2277–91.PubMedCentralPubMedCrossRef
14.
go back to reference Zhang R, Howell RM, Giebeler A, Taddei PJ, Mahajan A, Newhauser WD. Comparison of risk of radiogenic second cancer following photon and proton craniospinal irradiation for a pediatric medulloblastoma patient. Phys Med Biol. 2013;58:807–23.PubMedCentralPubMedCrossRef Zhang R, Howell RM, Giebeler A, Taddei PJ, Mahajan A, Newhauser WD. Comparison of risk of radiogenic second cancer following photon and proton craniospinal irradiation for a pediatric medulloblastoma patient. Phys Med Biol. 2013;58:807–23.PubMedCentralPubMedCrossRef
15.
go back to reference Zhang R, Howell RM, Homann K, Giebeler A, Taddei PJ, Mahajan A, et al. Predicted risks of radiogenic cardiac toxicity in two pediatric patients undergoing photon or proton radiotherapy. Radiat Oncol. 2013;8:184.PubMedCentralPubMedCrossRef Zhang R, Howell RM, Homann K, Giebeler A, Taddei PJ, Mahajan A, et al. Predicted risks of radiogenic cardiac toxicity in two pediatric patients undergoing photon or proton radiotherapy. Radiat Oncol. 2013;8:184.PubMedCentralPubMedCrossRef
16.
go back to reference Perez-Andujar A, Newhauser WD, Taddei PJ, Mahajan A, Howell RM. The predicted relative risk of premature ovarian failure for three radiotherapy modalities in a girl receiving craniospinal irradiation. Phys Med Biol. 2013;58:3107–23.PubMedCrossRef Perez-Andujar A, Newhauser WD, Taddei PJ, Mahajan A, Howell RM. The predicted relative risk of premature ovarian failure for three radiotherapy modalities in a girl receiving craniospinal irradiation. Phys Med Biol. 2013;58:3107–23.PubMedCrossRef
17.
go back to reference Brodin NP, Rosenschold PM, Aznar MC, Kiil-Berthelsen A, Vogelius IR, Nilsson P, et al. Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma. Acta Oncol. 2011;50:806–16.PubMedCrossRef Brodin NP, Rosenschold PM, Aznar MC, Kiil-Berthelsen A, Vogelius IR, Nilsson P, et al. Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma. Acta Oncol. 2011;50:806–16.PubMedCrossRef
18.
go back to reference Merchant TE, Hua CH, Shukla H, Ying X, Nill S, Oelfke U. Proton versus photon radiotherapy for common pediatric brain tumors: comparison of models of dose characteristics and their relationship to cognitive function. Pediatr Blood Cancer. 2008;51:110–7.PubMedCrossRef Merchant TE, Hua CH, Shukla H, Ying X, Nill S, Oelfke U. Proton versus photon radiotherapy for common pediatric brain tumors: comparison of models of dose characteristics and their relationship to cognitive function. Pediatr Blood Cancer. 2008;51:110–7.PubMedCrossRef
19.
go back to reference Athar BS, Paganetti H. Comparison of second cancer risk due to out-of-field doses from 6-MV IMRT and proton therapy based on 6 pediatric patient treatment plans. Radiother Oncol. 2011;98:87–92.PubMedCentralPubMedCrossRef Athar BS, Paganetti H. Comparison of second cancer risk due to out-of-field doses from 6-MV IMRT and proton therapy based on 6 pediatric patient treatment plans. Radiother Oncol. 2011;98:87–92.PubMedCentralPubMedCrossRef
20.
go back to reference Pfaffenberger A, Schneider U, Poppe B, Oelfke U. Phenomenological modelling of second cancer incidence for radiation treatment planning. Z Med Phys. 2009;19:236–50.PubMedCrossRef Pfaffenberger A, Schneider U, Poppe B, Oelfke U. Phenomenological modelling of second cancer incidence for radiation treatment planning. Z Med Phys. 2009;19:236–50.PubMedCrossRef
21.
go back to reference Schneider U, Lomax A, Hauser B, Kaser-Hotz B. Is the risk for secondary cancers after proton therapy enhanced distal to the planning target volume? a two-case report with possible explanations. Radiat Environ Biophys. 2006;45:39–43.PubMedCrossRef Schneider U, Lomax A, Hauser B, Kaser-Hotz B. Is the risk for secondary cancers after proton therapy enhanced distal to the planning target volume? a two-case report with possible explanations. Radiat Environ Biophys. 2006;45:39–43.PubMedCrossRef
22.
go back to reference NRC. Health risks from exposure to Low levels of ionizing radation: BEIR VII - phase 2. Washington, D.C: Nation Research Council of the National Academies; 2006. NRC. Health risks from exposure to Low levels of ionizing radation: BEIR VII - phase 2. Washington, D.C: Nation Research Council of the National Academies; 2006.
23.
go back to reference Rechner LA, Howell RM, Zhang R, Etzel C, Lee AK, Newhauser WD. Risk of radiogenic second cancers following volumetric modulated arc therapy and proton arc therapy for prostate cancer. Phys Med Biol. 2012;57:7117–32.PubMedCentralPubMedCrossRef Rechner LA, Howell RM, Zhang R, Etzel C, Lee AK, Newhauser WD. Risk of radiogenic second cancers following volumetric modulated arc therapy and proton arc therapy for prostate cancer. Phys Med Biol. 2012;57:7117–32.PubMedCentralPubMedCrossRef
24.
go back to reference Newhauser W, Jones T, Swerdloff S, Cilia M, Carver R, Halloran A, et al. Anonymization of DICOM electronic medical records for radiation therapy. Comput Biol Med. 2014;53C:134–40.CrossRef Newhauser W, Jones T, Swerdloff S, Cilia M, Carver R, Halloran A, et al. Anonymization of DICOM electronic medical records for radiation therapy. Comput Biol Med. 2014;53C:134–40.CrossRef
25.
go back to reference Miralbell R, Lomax A, Cella L, Schneider U. Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int J Radiat Oncol, Biol, Phys. 2002;54:824–9.CrossRef Miralbell R, Lomax A, Cella L, Schneider U. Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int J Radiat Oncol, Biol, Phys. 2002;54:824–9.CrossRef
26.
go back to reference Kry SF, Salehpour M, Followill DS, Stovall M, Kuban DA, White RA. Rosen, II: The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int J Radiat Oncol, Biol, Phys. 2005;62:1195–203.CrossRef Kry SF, Salehpour M, Followill DS, Stovall M, Kuban DA, White RA. Rosen, II: The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int J Radiat Oncol, Biol, Phys. 2005;62:1195–203.CrossRef
27.
go back to reference ICRP: Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (w(R)). ICRP Publication 92. In Ann ICRP, vol. 33; 2003. ICRP: Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (w(R)). ICRP Publication 92. In Ann ICRP, vol. 33; 2003.
28.
go back to reference ICRP. The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. In: Ann ICRP, vol. 37. 2007. ICRP. The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. In: Ann ICRP, vol. 37. 2007.
29.
go back to reference Dorr W, Herrmann T. Cancer induction by radiotherapy: dose dependence and spatial relationship to irradiated volume. J Radiol Prot. 2002;22:A117–21.PubMedCrossRef Dorr W, Herrmann T. Cancer induction by radiotherapy: dose dependence and spatial relationship to irradiated volume. J Radiol Prot. 2002;22:A117–21.PubMedCrossRef
30.
go back to reference Diallo I, Haddy N, Adjadj E, Samand A, Quiniou E, Chavaudra J, et al. Frequency distribution of second solid cancer locations in relation to the irradiated volume among 115 patients treated for childhood cancer. Int J Radiat Oncol, Biol, Phys. 2009;74:876–83.CrossRef Diallo I, Haddy N, Adjadj E, Samand A, Quiniou E, Chavaudra J, et al. Frequency distribution of second solid cancer locations in relation to the irradiated volume among 115 patients treated for childhood cancer. Int J Radiat Oncol, Biol, Phys. 2009;74:876–83.CrossRef
31.
go back to reference Schneider U, Kaser-Hotz B. Radiation risk estimates after radiotherapy: application of the organ equivalent dose concept to plateau dose-response relationships. Radiat Environ Biophys. 2005;44:235–9.PubMedCrossRef Schneider U, Kaser-Hotz B. Radiation risk estimates after radiotherapy: application of the organ equivalent dose concept to plateau dose-response relationships. Radiat Environ Biophys. 2005;44:235–9.PubMedCrossRef
32.
go back to reference Schneider U, Lomax A, Timmermann B. Second cancers in children treated with modern radiotherapy techniques. Radiother Oncol. 2008;89:135–40.PubMedCrossRef Schneider U, Lomax A, Timmermann B. Second cancers in children treated with modern radiotherapy techniques. Radiother Oncol. 2008;89:135–40.PubMedCrossRef
33.
go back to reference Sigurdson AJ, Ronckers CM, Mertens AC, Stovall M, Smith SA, Liu Y, et al. Primary thyroid cancer after a first tumour in childhood (the childhood cancer survivor study): a nested case-control study. Lancet. 2005;365:2014–23.PubMedCrossRef Sigurdson AJ, Ronckers CM, Mertens AC, Stovall M, Smith SA, Liu Y, et al. Primary thyroid cancer after a first tumour in childhood (the childhood cancer survivor study): a nested case-control study. Lancet. 2005;365:2014–23.PubMedCrossRef
34.
go back to reference Ronckers CM, Sigurdson AJ, Stovall M, Smith SA, Mertens AC, Liu Y, et al. Thyroid cancer in childhood cancer survivors: a detailed evaluation of radiation dose response and its modifiers. Radiat Res. 2006;166:618–28.PubMedCrossRef Ronckers CM, Sigurdson AJ, Stovall M, Smith SA, Mertens AC, Liu Y, et al. Thyroid cancer in childhood cancer survivors: a detailed evaluation of radiation dose response and its modifiers. Radiat Res. 2006;166:618–28.PubMedCrossRef
35.
go back to reference Bhatti P, Veiga LH, Ronckers CM, Sigurdson AJ, Stovall M, Smith SA, et al. Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: an update from the childhood cancer survivor study. Radiat Res. 2010;174:741–52.PubMedCentralPubMedCrossRef Bhatti P, Veiga LH, Ronckers CM, Sigurdson AJ, Stovall M, Smith SA, et al. Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: an update from the childhood cancer survivor study. Radiat Res. 2010;174:741–52.PubMedCentralPubMedCrossRef
36.
go back to reference ICRU. Prescribing, Recording, and Reporting Proton-Beam Therapy ICRU Report 78. Oxford: Oxford University Press; 2007. ICRU. Prescribing, Recording, and Reporting Proton-Beam Therapy ICRU Report 78. Oxford: Oxford University Press; 2007.
37.
go back to reference Fontenot JD, Lee AK, Newhauser WD. Risk of secondary malignant neoplasms from proton therapy and intensity-modulated x-ray therapy for early-stage prostate cancer. Int J Radiat Oncol, Biol, Phys. 2009;74:616–22.CrossRef Fontenot JD, Lee AK, Newhauser WD. Risk of secondary malignant neoplasms from proton therapy and intensity-modulated x-ray therapy for early-stage prostate cancer. Int J Radiat Oncol, Biol, Phys. 2009;74:616–22.CrossRef
38.
go back to reference Hartmann M, Schneider U. Integration of second cancer risk calculations in a radiotherapy treatment planning system. In XVII International Conference on the Use of Computers in Radiation Therapy (ICCR 2013). Melbourne, Australia. J Phys: Conf Ser. 2014; 489:012049. Hartmann M, Schneider U. Integration of second cancer risk calculations in a radiotherapy treatment planning system. In XVII International Conference on the Use of Computers in Radiation Therapy (ICCR 2013). Melbourne, Australia. J Phys: Conf Ser. 2014; 489:012049.
39.
go back to reference Berrington de Gonzalez A, Gilbert E, Curtis R, Inskip P, Kleinerman R, Morton L, et al. Second solid cancers after radiation therapy: a systematic review of the epidemiologic studies of the radiation dose-response relationship. Int J Radiat Oncol, Biol, Phys. 2013;86:224–33.CrossRef Berrington de Gonzalez A, Gilbert E, Curtis R, Inskip P, Kleinerman R, Morton L, et al. Second solid cancers after radiation therapy: a systematic review of the epidemiologic studies of the radiation dose-response relationship. Int J Radiat Oncol, Biol, Phys. 2013;86:224–33.CrossRef
40.
go back to reference Shuryak I, Hahnfeldt P, Hlatky L, Sachs RK, Brenner DJ. A new view of radiation-induced cancer: integrating short- and long-term processes. Part I: approach. Radiat Environ Biophys. 2009;48:263–74.PubMedCentralPubMedCrossRef Shuryak I, Hahnfeldt P, Hlatky L, Sachs RK, Brenner DJ. A new view of radiation-induced cancer: integrating short- and long-term processes. Part I: approach. Radiat Environ Biophys. 2009;48:263–74.PubMedCentralPubMedCrossRef
41.
go back to reference Shuryak I, Hahnfeldt P, Hlatky L, Sachs RK, Brenner DJ. A new view of radiation-induced cancer: integrating short- and long-term processes. Part II: second cancer risk estimation. Radiat Environ Biophys. 2009;48:275–86.PubMedCentralPubMedCrossRef Shuryak I, Hahnfeldt P, Hlatky L, Sachs RK, Brenner DJ. A new view of radiation-induced cancer: integrating short- and long-term processes. Part II: second cancer risk estimation. Radiat Environ Biophys. 2009;48:275–86.PubMedCentralPubMedCrossRef
42.
go back to reference Schneider U, Sumila M, Robotka J. Site-specific dose-response relationships for cancer induction from the combined Japanese a-bomb and Hodgkin cohorts for doses relevant to radiotherapy. Theor Biol Med Model. 2011;8:27.PubMedCentralPubMedCrossRef Schneider U, Sumila M, Robotka J. Site-specific dose-response relationships for cancer induction from the combined Japanese a-bomb and Hodgkin cohorts for doses relevant to radiotherapy. Theor Biol Med Model. 2011;8:27.PubMedCentralPubMedCrossRef
43.
go back to reference Schneider U, Sumila M, Robotka J, Gruber G, Mack A, Besserer J. Dose-response relationship for breast cancer induction at radiotherapy dose. Radiat Oncol. 2011;6:67.PubMedCentralPubMedCrossRef Schneider U, Sumila M, Robotka J, Gruber G, Mack A, Besserer J. Dose-response relationship for breast cancer induction at radiotherapy dose. Radiat Oncol. 2011;6:67.PubMedCentralPubMedCrossRef
44.
go back to reference Taddei PJ, Jalbout W, Howell RM, Khater N, Geara F, Homann K, et al. Analytical model for out-of-field dose in photon craniospinal irradiation. Phys Med Biol. 2013;58:7463–79.PubMedCentralPubMedCrossRef Taddei PJ, Jalbout W, Howell RM, Khater N, Geara F, Homann K, et al. Analytical model for out-of-field dose in photon craniospinal irradiation. Phys Med Biol. 2013;58:7463–79.PubMedCentralPubMedCrossRef
45.
go back to reference Zhang R, Perez-Andujar A, Fontenot JD, Taddei PJ, Newhauser WD. An analytic model of neutron ambient dose equivalent and equivalent dose for proton radiotherapy. Phys Med Biol. 2010;55:6975–85.PubMedCentralPubMedCrossRef Zhang R, Perez-Andujar A, Fontenot JD, Taddei PJ, Newhauser WD. An analytic model of neutron ambient dose equivalent and equivalent dose for proton radiotherapy. Phys Med Biol. 2010;55:6975–85.PubMedCentralPubMedCrossRef
46.
go back to reference Perez-Andujar A, Zhang R, Newhauser W. Monte Carlo and analytical model predictions of leakage neutron exposures from passively scattered proton therapy. Med Phys. 2013;40:121714.PubMedCentralPubMedCrossRef Perez-Andujar A, Zhang R, Newhauser W. Monte Carlo and analytical model predictions of leakage neutron exposures from passively scattered proton therapy. Med Phys. 2013;40:121714.PubMedCentralPubMedCrossRef
47.
go back to reference Rechner LA, Eley JG, Howell RM, Zhang R, Mirkovic D, Newhauser WD. Risk-optimized proton therapy to minimize radiogenic second cancers. Phys Med Biol. 2015; 60:3999-4013. Rechner LA, Eley JG, Howell RM, Zhang R, Mirkovic D, Newhauser WD. Risk-optimized proton therapy to minimize radiogenic second cancers. Phys Med Biol. 2015; 60:3999-4013.
Metadata
Title
Visualization of risk of radiogenic second cancer in the organs and tissues of the human body
Authors
Rui Zhang
Dragan Mirkovic
Wayne D Newhauser
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0404-x

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue