Skip to main content
Top
Published in: BMC Ophthalmology 1/2016

Open Access 01-12-2016 | Research article

Virtual phacoemulsification surgical simulation using visual guidance and performance parameters as a feasible proficiency assessment tool

Authors: Chee Kiang Lam, Kenneth Sundaraj, Mohd Nazri Sulaiman, Fazilawati A. Qamarruddin

Published in: BMC Ophthalmology | Issue 1/2016

Login to get access

Abstract

Background

Computer based surgical training is believed to be capable of providing a controlled virtual environment for medical professionals to conduct standardized training or new experimental procedures on virtual human body parts, which are generated and visualised three-dimensionally on a digital display unit. The main objective of this study was to conduct virtual phacoemulsification cataract surgery to compare performance by users with different proficiency on a virtual reality platform equipped with a visual guidance system and a set of performance parameters.

Methods

Ten experienced ophthalmologists and six medical residents were invited to perform the virtual surgery of the four main phacoemulsification cataract surgery procedures – 1) corneal incision (CI), 2) capsulorhexis (C), 3) phacoemulsification (P), and 4) intraocular lens implantation (IOL). Each participant was required to perform the complete phacoemulsification cataract surgery using the simulator for three consecutive trials (a standardized 30-min session). The performance of the participants during the three trials was supported using a visual guidance system and evaluated by referring to a set of parameters that was implemented in the performance evaluation system of the simulator.

Results

Subjects with greater experience obtained significantly higher scores in all four main procedures – CI1 (ρ = 0.038), CI2 (ρ = 0.041), C1 (ρ = 0.032), P2 (ρ = 0.035) and IOL1 (ρ = 0.011). It was also found that experience improved the completion times in all modules – CI4 (ρ = 0.026), C4 (ρ = 0.018), P6 (ρ = 0.028) and IOL4 (ρ = 0.029). Positive correlation was observed between experience and anti-tremor – C2 (ρ = 0.026), P3 (ρ = 0.015), P4 (ρ = 0.042) and IOL2 (ρ = 0.048) and similarly with anti-rupture – CI3 (ρ = 0.013), C3 (ρ = 0.027), P5 (ρ = 0.021) and IOL3 (ρ = 0.041). No significant difference was observed between the groups with regards to P1 (ρ = 0.077).

Conclusions

Statistical analysis of the results obtained from repetitive trials between two groups of users reveal that augmented virtual reality (VR) simulators have the potential and capability to be used as a feasible proficiency assessment tool for the complete four main procedures of phacoemulsification cataract surgery (ρ < 0.05), indicating the construct validity of the modules simulated with augmented visual guidance and assessed through performance parameters.
Literature
1.
go back to reference Owsley C, McGwin Jr G, Sloane M, Wells J, Stalvey BT, Gauthreaux S. Impact of cataract surgery on motor vehicle crash involvement by older adults. JAMA. 2002;288(7):841–9.CrossRefPubMed Owsley C, McGwin Jr G, Sloane M, Wells J, Stalvey BT, Gauthreaux S. Impact of cataract surgery on motor vehicle crash involvement by older adults. JAMA. 2002;288(7):841–9.CrossRefPubMed
2.
go back to reference Kyselova Z, Stefek M, Bauer V. Pharmacological prevention of diabetic cataract. J Diabetes Complicat. 2004;18(2):129–40.CrossRefPubMed Kyselova Z, Stefek M, Bauer V. Pharmacological prevention of diabetic cataract. J Diabetes Complicat. 2004;18(2):129–40.CrossRefPubMed
3.
go back to reference Seddon J, Fong D, West SK, Valmadrid CT. Epidemiology of risk factors for age-related cataract. Surv Ophthalmol. 1995;39(4):323–34.CrossRef Seddon J, Fong D, West SK, Valmadrid CT. Epidemiology of risk factors for age-related cataract. Surv Ophthalmol. 1995;39(4):323–34.CrossRef
4.
go back to reference Carron PN, Trueb L, Yersin B. Hide-fidelity simulation in the nonmedical domain: practices and potential transferable competencies for the medical field. Adv Med Educ Pract. 2011;2:149–55.CrossRefPubMedPubMedCentral Carron PN, Trueb L, Yersin B. Hide-fidelity simulation in the nonmedical domain: practices and potential transferable competencies for the medical field. Adv Med Educ Pract. 2011;2:149–55.CrossRefPubMedPubMedCentral
5.
go back to reference Van Sickle KR, Buck L, Willis R, Mangram A, Truitt MS, Shabahang M, Thomas S, Trombetta L, Dunkin B, Scott D. A multicenter, simulation-based skills training collaborative using shared GI mentor II systems: results from the Texas Association of Surgical Skills Laboratories (TASSL) flexible endoscopy curriculum. Surg Endosc. 2011;25(9):2980–6.CrossRefPubMed Van Sickle KR, Buck L, Willis R, Mangram A, Truitt MS, Shabahang M, Thomas S, Trombetta L, Dunkin B, Scott D. A multicenter, simulation-based skills training collaborative using shared GI mentor II systems: results from the Texas Association of Surgical Skills Laboratories (TASSL) flexible endoscopy curriculum. Surg Endosc. 2011;25(9):2980–6.CrossRefPubMed
6.
go back to reference Van Herzeele I, Aggarwal R. Virtual reality simulation in the endovascular field. US Cardiology. 2008;5(1):41–5. Van Herzeele I, Aggarwal R. Virtual reality simulation in the endovascular field. US Cardiology. 2008;5(1):41–5.
7.
go back to reference McDougall EM, Corica FA, Boker JR, Sala LG, Stoliar G, Borin JF, Chu FT, Clayman RV. Construct validity testing of a laparoscopic surgical simulator. J Am Coll Surg. 2006;202(5):779–87.CrossRefPubMed McDougall EM, Corica FA, Boker JR, Sala LG, Stoliar G, Borin JF, Chu FT, Clayman RV. Construct validity testing of a laparoscopic surgical simulator. J Am Coll Surg. 2006;202(5):779–87.CrossRefPubMed
8.
go back to reference Webster R, Sasanni J, Shenk R, Zoppetti G. Simulating the continuous curvilinear capsulorhexis procedure during cataract surgery. In Proceedings of the 15th IASTED International Conference, Modeling and Simulation. 2004;262–5. Webster R, Sasanni J, Shenk R, Zoppetti G. Simulating the continuous curvilinear capsulorhexis procedure during cataract surgery. In Proceedings of the 15th IASTED International Conference, Modeling and Simulation. 2004;262–5.
9.
go back to reference Webster R, Sassani J, Shenk R, Harris M, Gerber J, Benson A, Blumenstock J, Billman C, Haluck R. Simulating the continuous curvilinear capsulorhexis procedure during cataract surgery on the EYESI system. Stud Health Technol Inform. 2005;111:592–5.PubMed Webster R, Sassani J, Shenk R, Harris M, Gerber J, Benson A, Blumenstock J, Billman C, Haluck R. Simulating the continuous curvilinear capsulorhexis procedure during cataract surgery on the EYESI system. Stud Health Technol Inform. 2005;111:592–5.PubMed
10.
go back to reference Laurell CG, Söderberg P, Nordh L, Skarman E, Nordqvist P. Computer-simulated phacoemulsification. Ophthalmology. 2004;111(4):693–8.CrossRefPubMed Laurell CG, Söderberg P, Nordh L, Skarman E, Nordqvist P. Computer-simulated phacoemulsification. Ophthalmology. 2004;111(4):693–8.CrossRefPubMed
11.
go back to reference Feudner EM, Engel C, Neuhann IM, Petermeier K, Bartz-Schmidt KU, Szurman P. Virtual reality training improves wet-lab performance of capsulorhexis: results of a randomized, controlled study. Graefes Arch Clin Exp Ophthalmol. 2009;247(7):955–63.CrossRefPubMed Feudner EM, Engel C, Neuhann IM, Petermeier K, Bartz-Schmidt KU, Szurman P. Virtual reality training improves wet-lab performance of capsulorhexis: results of a randomized, controlled study. Graefes Arch Clin Exp Ophthalmol. 2009;247(7):955–63.CrossRefPubMed
12.
go back to reference Le TD, Adatia FA, Lam WC. Virtual reality ophthalmic surgical simulation as a feasible training and assessment tool: results of a multicentre study. Can J Ophthalmol. 2011;46(1):56–60.CrossRefPubMed Le TD, Adatia FA, Lam WC. Virtual reality ophthalmic surgical simulation as a feasible training and assessment tool: results of a multicentre study. Can J Ophthalmol. 2011;46(1):56–60.CrossRefPubMed
13.
go back to reference Söderberg PG, Laurell CG, Simawi W, Skarman E, Nordqvist P, Nordh L. Performance index for virtual reality phacoemulsification surgery. In Proceedings of SPIE. 2007;6426(1B):1–9. Söderberg PG, Laurell CG, Simawi W, Skarman E, Nordqvist P, Nordh L. Performance index for virtual reality phacoemulsification surgery. In Proceedings of SPIE. 2007;6426(1B):1–9.
14.
go back to reference Söderberg PG, Laurell CG, Simawi W, Skarman E, Nordh L, Nordqvist P. Measuring performance in virtual reality phacoemulsification surgery. In SPIE Proc. 2008;6844:12–1. Söderberg PG, Laurell CG, Simawi W, Skarman E, Nordh L, Nordqvist P. Measuring performance in virtual reality phacoemulsification surgery. In SPIE Proc. 2008;6844:12–1.
15.
go back to reference Söderberg P, Laurell C, Simawi W, Skarman E, Nordqvist P, Nordh L. Evaluation of response variables in computer-simulated virtual cataract surgery. Proc SPIE. 2006;6138(1B):1–9. Söderberg P, Laurell C, Simawi W, Skarman E, Nordqvist P, Nordh L. Evaluation of response variables in computer-simulated virtual cataract surgery. Proc SPIE. 2006;6138(1B):1–9.
16.
go back to reference Choi KS, Soo S, Chung FL. A virtual training simulator for learning cataract surgery with phacoemulsification. Comput Biol Med. 2009;39(11):1020–31.CrossRefPubMed Choi KS, Soo S, Chung FL. A virtual training simulator for learning cataract surgery with phacoemulsification. Comput Biol Med. 2009;39(11):1020–31.CrossRefPubMed
17.
go back to reference Lam CK, Sundaraj K, Sulaiman M. Virtual reality simulator for phacoemulsification cataract surgery education and training. Procedia Comput Sci. 2013;18:742–8.CrossRef Lam CK, Sundaraj K, Sulaiman M. Virtual reality simulator for phacoemulsification cataract surgery education and training. Procedia Comput Sci. 2013;18:742–8.CrossRef
18.
go back to reference Lam CK, Sundaraj K, Sulaiman MN. Computer-based virtual reality simulator for phacoemulsification cataract surgery training. Virtual Reality. 2014;18(4):281–93.CrossRef Lam CK, Sundaraj K, Sulaiman MN. Computer-based virtual reality simulator for phacoemulsification cataract surgery training. Virtual Reality. 2014;18(4):281–93.CrossRef
Metadata
Title
Virtual phacoemulsification surgical simulation using visual guidance and performance parameters as a feasible proficiency assessment tool
Authors
Chee Kiang Lam
Kenneth Sundaraj
Mohd Nazri Sulaiman
Fazilawati A. Qamarruddin
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2016
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-016-0269-2

Other articles of this Issue 1/2016

BMC Ophthalmology 1/2016 Go to the issue