Skip to main content
Top
Published in: Experimental Hematology & Oncology 1/2013

Open Access 01-12-2013 | Research

Vincristine could partly suppress stromal support to T-ALL blasts during pegylated arginase I treatment

Authors: Fung Kwong-Lam, Chan Godfrey Chi-Fung

Published in: Experimental Hematology & Oncology | Issue 1/2013

Login to get access

Abstract

Background

Relapsed T-lineage acute lymphoblastic leukemia (T-ALL) has been an incurable disease. Recent reports showed that an L-arginine depleting enzyme, pegylated arginase (BCT-100) may be effective against T-ALL cells. On the other hand, studies including ours had shown the symbiosis of ALL blasts and human mesenchymal stromal cells (hMSCs) in bone marrow microenvironment during L-asparaginase treatment. As L-asparaginase and BCT-100 both act by depleting lymphoid cells of specific amino acid, we hypothesized that hMSCs may also protect T-ALL blasts from BCT-100 treatment in co-culture and such protection may be abrogated by pre-treating hMSCs with vincristine (VCR).

Methods

XTT assay was used to test sensitivities of T-ALL cell lines and hMSCs to BCT-100. Apoptosis of T-ALL cell lines with or without BCT-100 treatment were tested by annexin V / propidium iodide (AV/PI) assay using flow cytometer. Western blotting was performed to analyze the expression of ornithine transcarbamylase (OTC), an enzyme involved in L-arginine metabolism which may account for BCT-100 resistance.

Results

hMSCs were resistant to BCT-100 while CCRF-CEM, Jurkat and MOLT-4 were very sensitive to it. hMSCs could protect all the three cell lines from BCT-100 treatment in transwell co-culture. All the 3 T-ALL cell lines were also found to be rescued by an L-arginine precursor citrulline, while the breakdown product of BCT-100, ornithine only had limited salvaging effect on CCRF-CEM but not Jurkat and MOLT-4. Both hMSCs and 3 T-ALL cell lines express citrulline synthesis enzyme, ornithine transcarbamylase (OTC) at basal level while only hMSCs could express OTC at relatively higher level under BCT-100 treatment. Treating hMSCs with vincristine before co-culturing with T-ALL could resume the cytotoxicity of BCT-100 to CCRF-CEM and MOLT-4 cells.

Conclusions

Our results suggest a possible strategy to overcome resistance to BCT-100 from cancer microenvironments by suppressing hMSCs either in marrow or in the perivascular niche using vincristine.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pui CH, Robison LL, Look AT: Acute lymphoblastic leukemia. Lancet 2008, 371: 1030–1043. 10.1016/S0140-6736(08)60457-2PubMedCrossRef Pui CH, Robison LL, Look AT: Acute lymphoblastic leukemia. Lancet 2008, 371: 1030–1043. 10.1016/S0140-6736(08)60457-2PubMedCrossRef
2.
go back to reference Chiaretti S, Foà R: T-cell acute lymphoblastic leukemia. Hematologica 2009,4(2):160–162.CrossRef Chiaretti S, Foà R: T-cell acute lymphoblastic leukemia. Hematologica 2009,4(2):160–162.CrossRef
3.
go back to reference Pui CH, Mullighan CG, Evans WE, Relling MV: Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood 2012,120(6):1165–1174. 10.1182/blood-2012-05-378943PubMedCentralPubMedCrossRef Pui CH, Mullighan CG, Evans WE, Relling MV: Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood 2012,120(6):1165–1174. 10.1182/blood-2012-05-378943PubMedCentralPubMedCrossRef
4.
go back to reference Thomas X, Boiron JM, Huguet F, Dombret H, Bradstock K, Vey N: Outcome of treatment in adults with acute lymphoblastic leukemia: analysis of the LALA-94 trial. J Clin Oncol 2004,22(20):4075–4086. 10.1200/JCO.2004.10.050PubMedCrossRef Thomas X, Boiron JM, Huguet F, Dombret H, Bradstock K, Vey N: Outcome of treatment in adults with acute lymphoblastic leukemia: analysis of the LALA-94 trial. J Clin Oncol 2004,22(20):4075–4086. 10.1200/JCO.2004.10.050PubMedCrossRef
5.
go back to reference Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D: Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 2007,117(4):1049–1057. 10.1172/JCI30235PubMedCentralPubMedCrossRef Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D: Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 2007,117(4):1049–1057. 10.1172/JCI30235PubMedCentralPubMedCrossRef
6.
go back to reference Li J, Law HK, Lau YL, Chan GC: Differential damage and recovery of human mesenchymal stem cells after exposure to chemotherapeutic agents. Br J Hematol 2004,127(3):326–334. 10.1111/j.1365-2141.2004.05200.xCrossRef Li J, Law HK, Lau YL, Chan GC: Differential damage and recovery of human mesenchymal stem cells after exposure to chemotherapeutic agents. Br J Hematol 2004,127(3):326–334. 10.1111/j.1365-2141.2004.05200.xCrossRef
8.
go back to reference Fung KL, Liang RH, Chan GC: Vincristine but not imatinib could suppress mesenchymal niche's support to lymphoid leukemic cells. Leuk Lymphoma 2010,51(3):515–522. 10.3109/10428190903406798PubMedCrossRef Fung KL, Liang RH, Chan GC: Vincristine but not imatinib could suppress mesenchymal niche's support to lymphoid leukemic cells. Leuk Lymphoma 2010,51(3):515–522. 10.3109/10428190903406798PubMedCrossRef
9.
go back to reference Kaspers GJ, Pieters R, Van Zantwijk CH, Van Wering ER, Veerman AJ: Clinical and cell biological features related to cellular drug resistance of childhood acute lymphoblastic leukemia cells. Leuk Lymphoma 1995,19(5–6):407–416.PubMedCrossRef Kaspers GJ, Pieters R, Van Zantwijk CH, Van Wering ER, Veerman AJ: Clinical and cell biological features related to cellular drug resistance of childhood acute lymphoblastic leukemia cells. Leuk Lymphoma 1995,19(5–6):407–416.PubMedCrossRef
10.
go back to reference Hernandez CP, Morrow K, Lopez-Barcons LA, Zabaleta J, Sierra R, Velasco C, Cole J, Rodriguez PC: Pegylated arginase I: a potential therapeutic approach in T-ALL. Blood 2010,115(25):5314–5221.CrossRef Hernandez CP, Morrow K, Lopez-Barcons LA, Zabaleta J, Sierra R, Velasco C, Cole J, Rodriguez PC: Pegylated arginase I: a potential therapeutic approach in T-ALL. Blood 2010,115(25):5314–5221.CrossRef
11.
go back to reference Morow K, Hernandez CP, Raver P, Del L, Wilk AM, Majumdar S, Wyczechowska , Reiss K, Rodriguez PC: Anti-leukemic mechanisms of pegylated arginase I in acute lymphoblastic T-cell leukemia. Leukemia 2013,27(3):569–577. 10.1038/leu.2012.247CrossRef Morow K, Hernandez CP, Raver P, Del L, Wilk AM, Majumdar S, Wyczechowska , Reiss K, Rodriguez PC: Anti-leukemic mechanisms of pegylated arginase I in acute lymphoblastic T-cell leukemia. Leukemia 2013,27(3):569–577. 10.1038/leu.2012.247CrossRef
12.
go back to reference Cheng PNM, Lam TL, Lam WM, Tsui SM, Cheng AWM, Lo WH, Leung YC: Pegylated decombinant human arginase (rhArg-peg5,000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Can Res 2007, 67: 309–317. 10.1158/0008-5472.CAN-06-1945CrossRef Cheng PNM, Lam TL, Lam WM, Tsui SM, Cheng AWM, Lo WH, Leung YC: Pegylated decombinant human arginase (rhArg-peg5,000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Can Res 2007, 67: 309–317. 10.1158/0008-5472.CAN-06-1945CrossRef
13.
go back to reference Hsueh EC, Knebel SM, Lo WH, Leung YC, Cheng PN, Hsueh CT: Deprivation of arginine by recombinant human arginase in prostate cancer cells. J Hematol Oncol 2012, 5: 17–22. 10.1186/1756-8722-5-17PubMedCentralPubMedCrossRef Hsueh EC, Knebel SM, Lo WH, Leung YC, Cheng PN, Hsueh CT: Deprivation of arginine by recombinant human arginase in prostate cancer cells. J Hematol Oncol 2012, 5: 17–22. 10.1186/1756-8722-5-17PubMedCentralPubMedCrossRef
14.
go back to reference Wheatley DN, Campbell E: Arginine deprivation, growth inhibition and tumour cell death: 3. Deficient utilisation of citrulline by malignant cells. Br J Cancer 2003, 89: 573–576. 10.1038/sj.bjc.6601134PubMedCentralPubMedCrossRef Wheatley DN, Campbell E: Arginine deprivation, growth inhibition and tumour cell death: 3. Deficient utilisation of citrulline by malignant cells. Br J Cancer 2003, 89: 573–576. 10.1038/sj.bjc.6601134PubMedCentralPubMedCrossRef
15.
go back to reference Kucerova L, Matuskova M, Hlubinova K, Altanerova Vand , Altaner C: Tumor cell behaviour modulation by mesenchymal stromal cells. Mol Cancer 2010, 9: 129–143. 10.1186/1476-4598-9-129PubMedCentralPubMedCrossRef Kucerova L, Matuskova M, Hlubinova K, Altanerova Vand , Altaner C: Tumor cell behaviour modulation by mesenchymal stromal cells. Mol Cancer 2010, 9: 129–143. 10.1186/1476-4598-9-129PubMedCentralPubMedCrossRef
16.
go back to reference Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F: Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem cells 2011,29(1):11–19. 10.1002/stem.559PubMedCentralPubMedCrossRef Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F: Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem cells 2011,29(1):11–19. 10.1002/stem.559PubMedCentralPubMedCrossRef
17.
18.
go back to reference Chiaretti S, Li X, Gentleman R, Vitale A, Vignetti M, Mandelli F, Ritz J, Foa R: Gene Expression Profile of Adult T Cell Acute Lymphocytic Leukemia Identifies Distinct Subsets of Patients with Different Response to Therapy and Survival. Blood 2004, 103: 2771–2778. 10.1182/blood-2003-09-3243PubMedCrossRef Chiaretti S, Li X, Gentleman R, Vitale A, Vignetti M, Mandelli F, Ritz J, Foa R: Gene Expression Profile of Adult T Cell Acute Lymphocytic Leukemia Identifies Distinct Subsets of Patients with Different Response to Therapy and Survival. Blood 2004, 103: 2771–2778. 10.1182/blood-2003-09-3243PubMedCrossRef
19.
go back to reference Scupoli MT, Donadelli M, Cioffi F, Rossi M, Perbellini O, Malpeli G, Corbioli S, Vinante F, Krampera M, Palmieri M, Scarpa A, Ariola C, Foà R, Pizzolo G: Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-kappaB and JNK/AP-1 pathways. Hematologica 2008,93(4):524–532. 10.3324/haematol.12098CrossRef Scupoli MT, Donadelli M, Cioffi F, Rossi M, Perbellini O, Malpeli G, Corbioli S, Vinante F, Krampera M, Palmieri M, Scarpa A, Ariola C, Foà R, Pizzolo G: Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-kappaB and JNK/AP-1 pathways. Hematologica 2008,93(4):524–532. 10.3324/haematol.12098CrossRef
20.
go back to reference Sumanasinghe RD, Pfeiler TW, Monteiro-Riviere NA, Loboa EG: Expression of proinflammatory cytokines by human mesenchymal stem cells in response to cyclic tensile strain. J Cell Physiol 2009,219(1):77–83. 10.1002/jcp.21653PubMedCrossRef Sumanasinghe RD, Pfeiler TW, Monteiro-Riviere NA, Loboa EG: Expression of proinflammatory cytokines by human mesenchymal stem cells in response to cyclic tensile strain. J Cell Physiol 2009,219(1):77–83. 10.1002/jcp.21653PubMedCrossRef
21.
go back to reference Ivanoff J, Tame T, Sundqvist KG: The role of chemokines and extracellular matrix components in the migration of T lymphocytes into three-dimensional substrata. Immunology 2005,114(1):53–62. 10.1111/j.1365-2567.2004.02005.xPubMedCentralPubMedCrossRef Ivanoff J, Tame T, Sundqvist KG: The role of chemokines and extracellular matrix components in the migration of T lymphocytes into three-dimensional substrata. Immunology 2005,114(1):53–62. 10.1111/j.1365-2567.2004.02005.xPubMedCentralPubMedCrossRef
22.
go back to reference Crenn P, Vahedi K, Lavergne-Slove A, Cynober L, Matuchansky C, Messing B: Plasma citrulline: a marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology 2003,124(5):1210–1219. 10.1016/S0016-5085(03)00170-7PubMedCrossRef Crenn P, Vahedi K, Lavergne-Slove A, Cynober L, Matuchansky C, Messing B: Plasma citrulline: a marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology 2003,124(5):1210–1219. 10.1016/S0016-5085(03)00170-7PubMedCrossRef
23.
go back to reference Prata Kde L, Orellana MD, De Santis GC, Kashima S, Fontes AM, Carrara R, Palma PV, Neder L, Covas DT: Effects of high-dose chemotherapy on bone marrow multipotent mesenchymal stromal cells isolated from lymphoma patients. Exp Hematol 2010,38(4):292–300. 10.1016/j.exphem.2010.01.006PubMedCrossRef Prata Kde L, Orellana MD, De Santis GC, Kashima S, Fontes AM, Carrara R, Palma PV, Neder L, Covas DT: Effects of high-dose chemotherapy on bone marrow multipotent mesenchymal stromal cells isolated from lymphoma patients. Exp Hematol 2010,38(4):292–300. 10.1016/j.exphem.2010.01.006PubMedCrossRef
24.
go back to reference Kemp K, Morse R, Wexler S, Cox C, Mallam E, Hows J, Donaldson C: Chemotherapy-induced mesenchymal stem cell damage in patients with hematological malignancy. Ann Hematol 2010,89(7):101–113. Kemp K, Morse R, Wexler S, Cox C, Mallam E, Hows J, Donaldson C: Chemotherapy-induced mesenchymal stem cell damage in patients with hematological malignancy. Ann Hematol 2010,89(7):101–113.
25.
go back to reference Mihara K, Imai C, Coustan-Smith E, Dome JS, Dominici M, Vanin E, Campana D: Development and functional characterization of human bone marrow mesenchymal cells immortalized by enforced expression of telomerase. Br J Hematol 2003, 120: 846–849. 10.1046/j.1365-2141.2003.04217.xCrossRef Mihara K, Imai C, Coustan-Smith E, Dome JS, Dominici M, Vanin E, Campana D: Development and functional characterization of human bone marrow mesenchymal cells immortalized by enforced expression of telomerase. Br J Hematol 2003, 120: 846–849. 10.1046/j.1365-2141.2003.04217.xCrossRef
Metadata
Title
Vincristine could partly suppress stromal support to T-ALL blasts during pegylated arginase I treatment
Authors
Fung Kwong-Lam
Chan Godfrey Chi-Fung
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Experimental Hematology & Oncology / Issue 1/2013
Electronic ISSN: 2162-3619
DOI
https://doi.org/10.1186/2162-3619-2-11

Other articles of this Issue 1/2013

Experimental Hematology & Oncology 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine