Skip to main content
Top
Published in: BMC Infectious Diseases 1/2005

Open Access 01-12-2005 | Research article

Viability testing of material derived from Mycobacterium tuberculosisprior to removal from a Containment Level-III Laboratory as part of a Laboratory Risk Assessment Program

Authors: Kym S Blackwood, Tamara V Burdz, Christine Y Turenne, Meenu K Sharma, Amin M Kabani, Joyce N Wolfe

Published in: BMC Infectious Diseases | Issue 1/2005

Login to get access

Abstract

Background

In the field of clinical mycobacteriology, Mycobacterium tuberculosis (MTB) can be a difficult organism to manipulate due to the restrictive environment of a containment level 3 (CL3) laboratory. Tests for rapid diagnostic work involving smears and molecular methods do not require CL3 practices after the organism has been rendered non-viable. While it has been assumed that after organism deactivation these techniques can be performed outside of a CL3, no conclusive study has consistently confirmed that the organisms are noninfectious after the theoretical 'deactivation' steps. Previous studies have shown that initial steps (such as heating /chemical fixation) may not consistently kill MTB organisms.

Methods

An inclusive viability study (n = 226) was undertaken to determine at which point handling of culture extraction materials does not necessitate a CL3 environment. Four different laboratory protocols tested for viability included: standard DNA extractions for IS6110 fingerprinting, crude DNA preparations for PCR by boiling and mechanical lysis, protein extractions, and smear preparations. For each protocol, laboratory staff planted a proportion of the resulting material to Bactec 12B medium that was observed for growth for 8 weeks.

Results

Of the 208 isolates initially tested, 21 samples grew within the 8-week period. Sixteen (7.7%) of these yielded positive results for MTB that included samples of: deactivated culture resuspensions exposed to 80°C for 20 minutes, smear preparations and protein extractions. Test procedures were consequently modified and tested again (n = 18), resulting in 0% viability.

Conclusions

This study demonstrates that it cannot be assumed that conventional practices (i.e. smear preparation) or extraction techniques render the organism non-viable. All methodologies, new and existing, should be examined by individual laboratories to validate the safe removal of material derived from MTB to the outside of a CL3 laboratory. This process is vital to establish in house biosafety-validated practices with the aim of protecting laboratory workers conducting these procedures.
Appendix
Available only for authorised users
Literature
1.
go back to reference Collins CH, Kennedy DA: Laboratory-acquired Infections: History, Incidence, Causes and Prevention. 1998, U. K., Butterworth Heinemann, 4th Collins CH, Kennedy DA: Laboratory-acquired Infections: History, Incidence, Causes and Prevention. 1998, U. K., Butterworth Heinemann, 4th
2.
go back to reference Miller CD, Songer JR, Sullivan JF: A twenty-five year review of laboratory-acquired human infections at the National Animal Disease Center. Am Ind Hyg Assoc J. 1987, 48: 271-275.CrossRefPubMed Miller CD, Songer JR, Sullivan JF: A twenty-five year review of laboratory-acquired human infections at the National Animal Disease Center. Am Ind Hyg Assoc J. 1987, 48: 271-275.CrossRefPubMed
3.
go back to reference Pike RM: Laboratory-associated infections: summary and analysis of 3921 cases. Health Lab Sci. 1976, 13: 105-114.PubMed Pike RM: Laboratory-associated infections: summary and analysis of 3921 cases. Health Lab Sci. 1976, 13: 105-114.PubMed
4.
go back to reference Garber E, San Gabriel P, Lambert L, Saiman L: A survey of latent tuberculosis infection among laboratory healthcare workers in New York City. Infect Control Hosp Epidemiol. 2003, 24: 801-806.CrossRefPubMed Garber E, San Gabriel P, Lambert L, Saiman L: A survey of latent tuberculosis infection among laboratory healthcare workers in New York City. Infect Control Hosp Epidemiol. 2003, 24: 801-806.CrossRefPubMed
5.
go back to reference Pike RM: Laboratory-associated infections: incidence, fatalities, causes, and prevention. Annu Rev Microbiol. 1979, 33: 41-66. 10.1146/annurev.mi.33.100179.000353.CrossRefPubMed Pike RM: Laboratory-associated infections: incidence, fatalities, causes, and prevention. Annu Rev Microbiol. 1979, 33: 41-66. 10.1146/annurev.mi.33.100179.000353.CrossRefPubMed
6.
go back to reference U.S.Department of Health and Human Services Public Health Service Centres for Disease Control and Prevention and National Institutes of Health: Primary Containment for Biohazards: Selection, Installation and Use of Biological Safety Cabinets. 1995, Washington, U.S. Government Printing Office U.S.Department of Health and Human Services Public Health Service Centres for Disease Control and Prevention and National Institutes of Health: Primary Containment for Biohazards: Selection, Installation and Use of Biological Safety Cabinets. 1995, Washington, U.S. Government Printing Office
7.
go back to reference Bemer MP, Drugeon HB: Inactivation of Mycobacterium tuberculosis for DNA typing analysis. J Clin Microbiol. 1999, 37: 2350-2351. Bemer MP, Drugeon HB: Inactivation of Mycobacterium tuberculosis for DNA typing analysis. J Clin Microbiol. 1999, 37: 2350-2351.
8.
go back to reference Zwadyk P, Down JA, Myers N, Dey MS: Rendering of mycobacteria safe for molecular diagnostic studies and development of a lysis method for strand displacement amplification and PCR. J Clin Microbiol. 1994, 32: 2140-2146.PubMedPubMedCentral Zwadyk P, Down JA, Myers N, Dey MS: Rendering of mycobacteria safe for molecular diagnostic studies and development of a lysis method for strand displacement amplification and PCR. J Clin Microbiol. 1994, 32: 2140-2146.PubMedPubMedCentral
9.
go back to reference Doig C, Seagar AL, Watt B, Forbes KJ: The efficacy of the heat killing of Mycobacterium tuberculosis. J Clin Pathol. 2002, 55: 778-779. 10.1136/jcp.55.10.778.CrossRefPubMedPubMedCentral Doig C, Seagar AL, Watt B, Forbes KJ: The efficacy of the heat killing of Mycobacterium tuberculosis. J Clin Pathol. 2002, 55: 778-779. 10.1136/jcp.55.10.778.CrossRefPubMedPubMedCentral
10.
go back to reference Chedore P, Th'ng C, Nolan DH, Churchwell GM, Sieffert DE, Hale YM, Jamieson F: Method for inactivating and fixing unstained smear preparations of mycobacterium tuberculosis for improved laboratory safety. J Clin Microbiol. 2002, 40: 4077-4080. 10.1128/JCM.40.11.4077-4080.2002.CrossRefPubMedPubMedCentral Chedore P, Th'ng C, Nolan DH, Churchwell GM, Sieffert DE, Hale YM, Jamieson F: Method for inactivating and fixing unstained smear preparations of mycobacterium tuberculosis for improved laboratory safety. J Clin Microbiol. 2002, 40: 4077-4080. 10.1128/JCM.40.11.4077-4080.2002.CrossRefPubMedPubMedCentral
11.
go back to reference Kao AS, Ashford DA, McNeil MM, Warren NG, Good RC: Descriptive profile of tuberculin skin testing programs and laboratory-acquired tuberculosis infections in public health laboratories. J Clin Microbiol. 1997, 35: 1847-1851.PubMedPubMedCentral Kao AS, Ashford DA, McNeil MM, Warren NG, Good RC: Descriptive profile of tuberculin skin testing programs and laboratory-acquired tuberculosis infections in public health laboratories. J Clin Microbiol. 1997, 35: 1847-1851.PubMedPubMedCentral
12.
go back to reference Schwebach JR, Jacobs WR, Casadevall A: Sterilization of Mycobacterium tuberculosis Erdman samples by antimicrobial fixation in a biosafety level 3 laboratory. J Clin Microbiol. 2001, 39: 769-771. 10.1128/JCM.39.2.769-771.2001.CrossRefPubMedPubMedCentral Schwebach JR, Jacobs WR, Casadevall A: Sterilization of Mycobacterium tuberculosis Erdman samples by antimicrobial fixation in a biosafety level 3 laboratory. J Clin Microbiol. 2001, 39: 769-771. 10.1128/JCM.39.2.769-771.2001.CrossRefPubMedPubMedCentral
13.
go back to reference van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, Hermans P, Martin C, McAdam R, Shinnick TM, Small PM: Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993, 31: 406-409.PubMedPubMedCentral van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, Hermans P, Martin C, McAdam R, Shinnick TM, Small PM: Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993, 31: 406-409.PubMedPubMedCentral
14.
go back to reference Rutala WA, Cole EC, Wannamaker NS, Weber DJ: Inactivation of Mycobacterium tuberculosis and Mycobacterium bovis by 14 hospital disinfectants. Am J Med. 1991, 91: 267S-271S. 10.1016/0002-9343(91)90380-G.CrossRefPubMed Rutala WA, Cole EC, Wannamaker NS, Weber DJ: Inactivation of Mycobacterium tuberculosis and Mycobacterium bovis by 14 hospital disinfectants. Am J Med. 1991, 91: 267S-271S. 10.1016/0002-9343(91)90380-G.CrossRefPubMed
Metadata
Title
Viability testing of material derived from Mycobacterium tuberculosisprior to removal from a Containment Level-III Laboratory as part of a Laboratory Risk Assessment Program
Authors
Kym S Blackwood
Tamara V Burdz
Christine Y Turenne
Meenu K Sharma
Amin M Kabani
Joyce N Wolfe
Publication date
01-12-2005
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2005
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-5-4

Other articles of this Issue 1/2005

BMC Infectious Diseases 1/2005 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine