Skip to main content
Top
Published in: Journal of Nuclear Cardiology 4/2021

01-08-2021 | Ventricular Septal Defect | ORIGINAL ARTICLE

Reducing radiation dose from myocardial perfusion imaging in subjects with complex congenital heart disease

Authors: Sara L. Partington, MD, Anne Marie Valente, MD, John Bruyere Jr, MD, Dillenia Rosica, MD, Keri M. Shafer, MD, Michael J. Landzberg, MD, Viviany R. Taqueti, MD, Ron Blankstein, MD, Hicham Skali, MD, Neha Kwatra, MD, Marcelo F. DiCarli, MD, Frederick D. Grant, MD, Sharmila Dorbala, MD, MPH

Published in: Journal of Nuclear Cardiology | Issue 4/2021

Login to get access

Abstract

Introduction

The prevalence of defects and effective radiation dose from various myocardial perfusion imaging (MPI) strategies in congenital heart disease (CHD) is unknown.

Methods

We studied 75 subjects with complex CHD (ages 5 to 80 years) referred for MPI between 2002 and 2015. A rest and exercise or pharmacologic stress MPI was performed using 99mTechnetium sestamibi, 82rubidium or 13N-ammonia, and Sodium iodide SPECT (single-photon emission computed tomography), SPECT/CT or Cadmium zinc telluride (CZT) SPECT or PET (positron emission tomography)/CT scanners. Deidentified images were interpreted semi-quantitatively in three batches: stress only MPI, stress/rest MPI, and stress/rest MPI with taking into account a history of ventricular septal defect repair. Effective radiation dose was estimated for stress/rest MPI and predicted for 1-day stress-first (normal stress scans), and for 2-day stress/rest MPI (abnormal stress scans).

Results

The median age was 18.6 years. The most common type of CHD was transposition of the great arteries (63%). Rest/stress MPI was abnormal in 43% of subjects and 25% of the abnormal scans demonstrated reversible defects. Of the subjects with abnormal MPI, 33% had significant underlying anatomic coronary artery obstruction. Estimated mean effective radiation dose ranged from 2.1 ± 0.6 mSv for 13N-ammonia PET/CT to 12.5 ± 0.9 mSv for SPECT/CT. Predicted effective radiation dose was significantly lower for stress-first MPI and for 2-day stress/rest protocols.

Conclusions

Due to the relatively high prevalence of abnormal stress MPI, tailored protocols with a stress-first MPI as well as the use of 2-day protocols and advanced imaging technologies including CZT SPECT, novel image reconstruction software, and PET MPI could substantially reduce radiation dose in complex CHD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Warnes CA, Liberthson R, Danielson GK, et al. Task force 1: The changing profile of congenital heart disease in adult life. J Am Coll Cardiol 2001;37:1170-5.CrossRef Warnes CA, Liberthson R, Danielson GK, et al. Task force 1: The changing profile of congenital heart disease in adult life. J Am Coll Cardiol 2001;37:1170-5.CrossRef
2.
go back to reference Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population: Changing prevalence and age distribution. Circulation 2007;115(2):163-72.CrossRef Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population: Changing prevalence and age distribution. Circulation 2007;115(2):163-72.CrossRef
3.
go back to reference Deen JF, Krieger EV, Slee AE, et al. Metabolic syndrome in adults with congenital heart disease. J Am Heart Assoc 2016;5:e001132.PubMedPubMedCentral Deen JF, Krieger EV, Slee AE, et al. Metabolic syndrome in adults with congenital heart disease. J Am Heart Assoc 2016;5:e001132.PubMedPubMedCentral
4.
go back to reference Giannakoulas G, Dimopoulos K, Engel R, et al. Burden of coronary artery disease in adults with congenital heart disease and its relation to congenital and traditional heart risk factors. Am J Cardiol 2009;103:1445-50.CrossRef Giannakoulas G, Dimopoulos K, Engel R, et al. Burden of coronary artery disease in adults with congenital heart disease and its relation to congenital and traditional heart risk factors. Am J Cardiol 2009;103:1445-50.CrossRef
5.
go back to reference Yalonetsky S, Horlick EM, Osten MD, Benson LN, Oechslin EN, Silversides CK. Clinical characteristics of coronary artery disease in adults with congenital heart defects. Int J Cardiol 2013;164:217-20.CrossRef Yalonetsky S, Horlick EM, Osten MD, Benson LN, Oechslin EN, Silversides CK. Clinical characteristics of coronary artery disease in adults with congenital heart defects. Int J Cardiol 2013;164:217-20.CrossRef
6.
go back to reference Partington SL, Valente AM, Landzberg M, Grant F, Di Carli MF, Dorbala S. Clinical applications of radionuclide imaging in the evaluation and management of patients with congenital heart disease. J Nucl Cardiol 2016;23:45-63.CrossRef Partington SL, Valente AM, Landzberg M, Grant F, Di Carli MF, Dorbala S. Clinical applications of radionuclide imaging in the evaluation and management of patients with congenital heart disease. J Nucl Cardiol 2016;23:45-63.CrossRef
7.
go back to reference Morray BH, McElhinney DB, Cheatham JP, et al. Risk of coronary artery compression among patients referred for transcatheter pulmonary valve implantation: a multicenter experience. Circ Cardiovasc Interv 2013;6:535-42.CrossRef Morray BH, McElhinney DB, Cheatham JP, et al. Risk of coronary artery compression among patients referred for transcatheter pulmonary valve implantation: a multicenter experience. Circ Cardiovasc Interv 2013;6:535-42.CrossRef
8.
go back to reference Bonnet D, Bonhoeffer P, Piechaud JF, et al. Long-term fate of the coronary arteries after the arterial switch operation in newborns with transposition of the great arteries. Heart 1996;76:274-9.CrossRef Bonnet D, Bonhoeffer P, Piechaud JF, et al. Long-term fate of the coronary arteries after the arterial switch operation in newborns with transposition of the great arteries. Heart 1996;76:274-9.CrossRef
9.
go back to reference Tanel RE, Wernovsky G, Landzberg MJ, Perry SB, Burke RP. Coronary artery abnormalities detected at cardiac catheterization following the arterial switch operation for transposition of the great arteries. Am J Cardiol 1995;76:153-7.CrossRef Tanel RE, Wernovsky G, Landzberg MJ, Perry SB, Burke RP. Coronary artery abnormalities detected at cardiac catheterization following the arterial switch operation for transposition of the great arteries. Am J Cardiol 1995;76:153-7.CrossRef
10.
go back to reference Hill KD, Frush DP, Han BK, et al. Radiation safety in children with congenital and acquired heart disease: a scientific position statement on multimodality dose optimization from the image gently alliance. JACC Cardiovasc Imaging 2017;10:797-818.CrossRef Hill KD, Frush DP, Han BK, et al. Radiation safety in children with congenital and acquired heart disease: a scientific position statement on multimodality dose optimization from the image gently alliance. JACC Cardiovasc Imaging 2017;10:797-818.CrossRef
11.
go back to reference Di Carli MF, Dorbala S, Meserve J, El Fakhri G, Sitek A, Moore SC. Clinical myocardial perfusion PET/CT. J Nucl Med 2007;48:783-93.CrossRef Di Carli MF, Dorbala S, Meserve J, El Fakhri G, Sitek A, Moore SC. Clinical myocardial perfusion PET/CT. J Nucl Med 2007;48:783-93.CrossRef
12.
go back to reference DePuey EG, Ata P, Wray R, Friedman M. Very low-activity stress/high-activity rest, single-day myocardial perfusion SPECT with a conventional sodium iodide camera and wide beam reconstruction processing. J Nucl Cardiol 2012;19:931-44.CrossRef DePuey EG, Ata P, Wray R, Friedman M. Very low-activity stress/high-activity rest, single-day myocardial perfusion SPECT with a conventional sodium iodide camera and wide beam reconstruction processing. J Nucl Cardiol 2012;19:931-44.CrossRef
13.
go back to reference DePuey EG. Advances in SPECT camera software and hardware: currently available and new on the horizon. J Nucl Cardiol 2012;19(3):551-81 quiz 585.CrossRef DePuey EG. Advances in SPECT camera software and hardware: currently available and new on the horizon. J Nucl Cardiol 2012;19(3):551-81 quiz 585.CrossRef
14.
go back to reference Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging: similar patient mortality with reduced radiation exposure. J Am Coll Cardiol 2010;55:221-30.CrossRef Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging: similar patient mortality with reduced radiation exposure. J Am Coll Cardiol 2010;55:221-30.CrossRef
15.
go back to reference Dorbala S, Blankstein R, Skali H, et al. Approaches to reducing radiation dose from radionuclide myocardial perfusion imaging. J Nucl Med 2015;56:592-9.CrossRef Dorbala S, Blankstein R, Skali H, et al. Approaches to reducing radiation dose from radionuclide myocardial perfusion imaging. J Nucl Med 2015;56:592-9.CrossRef
16.
go back to reference Kuebler JD, Chen MH, Alexander ME, Rhodes J. Exercise performance in patients with D-loop transposition of the great arteries after arterial switch operation: Long-term outcomes and longitudinal assessment. Pediatr Cardiol 2016;37:283-9.CrossRef Kuebler JD, Chen MH, Alexander ME, Rhodes J. Exercise performance in patients with D-loop transposition of the great arteries after arterial switch operation: Long-term outcomes and longitudinal assessment. Pediatr Cardiol 2016;37:283-9.CrossRef
17.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. J Nucl Cardiol 2002;9:240-5.CrossRef Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. J Nucl Cardiol 2002;9:240-5.CrossRef
18.
go back to reference Hachamovitch R, Berman DS, Kiat H, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation 1996;93:905-14.CrossRef Hachamovitch R, Berman DS, Kiat H, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation 1996;93:905-14.CrossRef
19.
go back to reference Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. A prognostic score for prediction of cardiac mortality risk after adenosine stress myocardial perfusion scintigraphy. J Am Coll Cardiol 2005;45:722-9.CrossRef Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. A prognostic score for prediction of cardiac mortality risk after adenosine stress myocardial perfusion scintigraphy. J Am Coll Cardiol 2005;45:722-9.CrossRef
20.
go back to reference Cohen HA, Baird MG, Rouleau JR, et al. Thallium 201 myocardial imaging in patients with pulmonary hypertension. Circulation 1976;54:790-5.CrossRef Cohen HA, Baird MG, Rouleau JR, et al. Thallium 201 myocardial imaging in patients with pulmonary hypertension. Circulation 1976;54:790-5.CrossRef
21.
go back to reference Mannting F, Zabrodina YV, Dass C. Signifiance of increased right ventricular uptake on 99mTc-sestamibi SPECT in patients with coronary artery disease. J Nucl Med 1999;40:889-94.PubMed Mannting F, Zabrodina YV, Dass C. Signifiance of increased right ventricular uptake on 99mTc-sestamibi SPECT in patients with coronary artery disease. J Nucl Med 1999;40:889-94.PubMed
22.
go back to reference Dorbala S, Di Carli MF, Delbeke D, et al. SNMMI/ASNC/SCCT guideline for cardiac SPECT/CT and PET/CT 1.0. J Nucl Med 2013;54:1485-507.CrossRef Dorbala S, Di Carli MF, Delbeke D, et al. SNMMI/ASNC/SCCT guideline for cardiac SPECT/CT and PET/CT 1.0. J Nucl Med 2013;54:1485-507.CrossRef
23.
go back to reference Stout KK, Daniels KG, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, Crumb SR, Dearani JA, Fuller S, Gurvitz M, Khairy P, Landzberg MJ, Saidi A, Valente AM, Van Hare GF. AHA/ACC Guideline for the Management of Adults with congenital heart disease. J Am Coll Cardiol 2018;18:SO735-1097. Stout KK, Daniels KG, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, Crumb SR, Dearani JA, Fuller S, Gurvitz M, Khairy P, Landzberg MJ, Saidi A, Valente AM, Van Hare GF. AHA/ACC Guideline for the Management of Adults with congenital heart disease. J Am Coll Cardiol 2018;18:SO735-1097.
24.
go back to reference Einstein AJ, Pascual TN, Mercuri M, et al. Current worldwide nuclear cardiology practices and radiation exposure: results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS). Eur Heart J 2015;36:1689-96.CrossRef Einstein AJ, Pascual TN, Mercuri M, et al. Current worldwide nuclear cardiology practices and radiation exposure: results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS). Eur Heart J 2015;36:1689-96.CrossRef
25.
go back to reference Iskandrian AE. Stress-only myocardial perfusion imaging a new paradigm. J Am Coll Cardiol 2010;55:231-3.CrossRef Iskandrian AE. Stress-only myocardial perfusion imaging a new paradigm. J Am Coll Cardiol 2010;55:231-3.CrossRef
26.
go back to reference Einstein AJ, Johnson LL, DeLuca AJ, et al. Radiation dose and prognosis of ultra-low-dose stress-first myocardial perfusion SPECT in patients with chest pain using a high-efficiency camera. J Nucl Med 2015;56:545-51.CrossRef Einstein AJ, Johnson LL, DeLuca AJ, et al. Radiation dose and prognosis of ultra-low-dose stress-first myocardial perfusion SPECT in patients with chest pain using a high-efficiency camera. J Nucl Med 2015;56:545-51.CrossRef
27.
go back to reference Einstein AJ, Blankstein R, Andrews H, et al. Comparison of image quality, myocardial perfusion, and left ventricular function between standard imaging and single-injection ultra-low-dose imaging using a high-efficiency SPECT camera: the MILLISIEVERT study. J Nucl Med 2014;55:1430-7.CrossRef Einstein AJ, Blankstein R, Andrews H, et al. Comparison of image quality, myocardial perfusion, and left ventricular function between standard imaging and single-injection ultra-low-dose imaging using a high-efficiency SPECT camera: the MILLISIEVERT study. J Nucl Med 2014;55:1430-7.CrossRef
28.
go back to reference Patton JA, Turkington TG. SPECT/CT physical principles and attenuation correction. J Nucl Med Technol 2008;36:1-10.CrossRef Patton JA, Turkington TG. SPECT/CT physical principles and attenuation correction. J Nucl Med Technol 2008;36:1-10.CrossRef
29.
go back to reference Abbott BG, Case JA, Dorbala S, et al. Contemporary Cardiac SPECT imaging-innovations and best practices: An information statement from the american society of nuclear cardiology. J Nucl Cardiol 2018;25:1847-60.CrossRef Abbott BG, Case JA, Dorbala S, et al. Contemporary Cardiac SPECT imaging-innovations and best practices: An information statement from the american society of nuclear cardiology. J Nucl Cardiol 2018;25:1847-60.CrossRef
30.
go back to reference Dorbala S, Ananthasubramaniam K, Armstrong IS, et al. Single photon emission computed tomography (SPECT) Myocardial Perfusion Imaging Guidelines: Instrumentation, acquisition, processing, and interpretation. J Nucl Cardiol 2018;25:1784-846.CrossRef Dorbala S, Ananthasubramaniam K, Armstrong IS, et al. Single photon emission computed tomography (SPECT) Myocardial Perfusion Imaging Guidelines: Instrumentation, acquisition, processing, and interpretation. J Nucl Cardiol 2018;25:1784-846.CrossRef
31.
go back to reference Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. J Nucl Cardiol 2016;23:606-39.CrossRef Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. J Nucl Cardiol 2016;23:606-39.CrossRef
Metadata
Title
Reducing radiation dose from myocardial perfusion imaging in subjects with complex congenital heart disease
Authors
Sara L. Partington, MD
Anne Marie Valente, MD
John Bruyere Jr, MD
Dillenia Rosica, MD
Keri M. Shafer, MD
Michael J. Landzberg, MD
Viviany R. Taqueti, MD
Ron Blankstein, MD
Hicham Skali, MD
Neha Kwatra, MD
Marcelo F. DiCarli, MD
Frederick D. Grant, MD
Sharmila Dorbala, MD, MPH
Publication date
01-08-2021
Publisher
Springer International Publishing
Published in
Journal of Nuclear Cardiology / Issue 4/2021
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-019-01811-y

Other articles of this Issue 4/2021

Journal of Nuclear Cardiology 4/2021 Go to the issue