Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2016

Open Access 01-12-2016 | Research article

Variation in secondary metabolite production as well as antioxidant and antibacterial activities of Zingiber zerumbet (L.) at different stages of growth

Authors: Ali Ghasemzadeh, Hawa Z. E. Jaafar, Sadegh Ashkani, Asmah Rahmat, Abdul Shukor Juraimi, Adam Puteh, Mahmud Tengku Muda Mohamed

Published in: BMC Complementary Medicine and Therapies | Issue 1/2016

Login to get access

Abstract

Background

Zingiber zerumbet (L.) is a traditional Malaysian folk remedy that contains several interesting bioactive compounds of pharmaceutical quality.

Methods

Total flavonoids and total phenolics content from the leaf, stem, and rhizome of Z. zerumbet at 3 different growth stages (3, 6, and 9 months) were determined using spectrophotometric methods and individual flavonoid and phenolic compounds were identified using ultra-high performance liquid chromatography method. Chalcone Synthase (CHS) activity was measured using a CHS assay. Antioxidant activities were evaluated by ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays. The antibacterial activity was determined against Gram-positive and Gram-negative bacteria using the disc diffusion method.

Results

Highest content of total flavonoid [29.7 mg quercetin equivalents (QE)/g dry material (DM)] and total phenolic (44.8 mg gallic acid equivalents (GAE)/g DM) were detected in the rhizome extracts of 9-month-old plants. As the plant matured from 3 to 9 months, the total flavonoid content (TFC) and total phenolic content (TPC) decreased in the leaf, but increased significantly in the rhizomes. Among the secondary metabolites identified, the most abundant, based on the concentrations, were as follows: flavonoids, catechin > quercetin > rutin > luteolin > myricetin > kaempferol; phenolic acids, gallic acid > ferulic acid > caffeic acid > cinnamic acid. Rhizome extracts from 9-month-old plants demonstrated the highest CHS activity (7.48 nkat/mg protein), followed by the 6-month-old rhizomes (5.79 nkat/mg protein) and 3-month-old leaf (4.76 nkat/mg protein). Nine-month-old rhizomes exhibited the highest DPPH activity (76.42 %), followed by the 6-month-old rhizomes (59.41 %) and 3-month-old leaves (57.82 %), with half maximal inhibitory concentration (IC50) of 55.8, 86.4, and 98.5 μg/mL, respectively, compared to that of α- tocopherol (84.19 %; 44.8 μg/mL) and butylated hydroxytoluene (BHT) (70.25 %; 58.6 μg/mL). The highest FRAP activity was observed in 9-month-old rhizomes, with IC50 of 62.4 μg/mL. Minimal Inhibitory Concentration (MIC) of Z. zerumbet extracts against Gram-positive and Gram-negative bacteria ranged from 30 to >100 µg/mL. Among the bacterial strains examined, Staphylococcus aureus was sensitive to the leaf extract of Z. zerumbet, with MIC of 30.0 μg/mL and other strains were sensitive to the rhizome extracts.

Conclusions

Three- and 9-month-old plants are recommended when harvesting the leaf and rhizome of Z. zerumbet, respectively, in order to obtain effective pharmaceutical quality of the desired compounds.
Literature
1.
go back to reference Ghasemzadeh A, Nasiri A, Jaafar HZ, Baghdadi A, Ahmad I. Changes in phytochemical synthesis, chalcone synthase activity and pharmaceutical qualities of Sabah snake grass (Clinacanthus nutans L.) in relation to plant age. Molecules. 2014;19(11):17632–48.CrossRefPubMed Ghasemzadeh A, Nasiri A, Jaafar HZ, Baghdadi A, Ahmad I. Changes in phytochemical synthesis, chalcone synthase activity and pharmaceutical qualities of Sabah snake grass (Clinacanthus nutans L.) in relation to plant age. Molecules. 2014;19(11):17632–48.CrossRefPubMed
2.
go back to reference Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15(10):7313–52.CrossRefPubMed Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15(10):7313–52.CrossRefPubMed
3.
go back to reference Yan X, Murphy BT, Hammond GB, Vinson JA, Neto CC. Antioxidant activities and antitumor screening of extracts from cranberry fruit (Vaccinium macrocarpon). J Agric Food Chem. 2002;50(21):5844–9.CrossRefPubMed Yan X, Murphy BT, Hammond GB, Vinson JA, Neto CC. Antioxidant activities and antitumor screening of extracts from cranberry fruit (Vaccinium macrocarpon). J Agric Food Chem. 2002;50(21):5844–9.CrossRefPubMed
4.
go back to reference Ghasemzadeh A, Jaafar HZ, Rahmat A. Identification and concentration of some flavonoid components in Malaysian young ginger (Zingiber officinale Roscoe) varieties by a high performance liquid chromatography method. Molecules. 2010;15(9):6231–43.CrossRefPubMed Ghasemzadeh A, Jaafar HZ, Rahmat A. Identification and concentration of some flavonoid components in Malaysian young ginger (Zingiber officinale Roscoe) varieties by a high performance liquid chromatography method. Molecules. 2010;15(9):6231–43.CrossRefPubMed
5.
go back to reference Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004;74(17):2157–84.CrossRefPubMed Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004;74(17):2157–84.CrossRefPubMed
6.
go back to reference Lu J, Papp LV, Fang J, Rodriguez-Nieto S, Zhivotovsky B, Holmgren A. Inhibition of mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activity. Cancer Res. 2006;66(8):4410–8.CrossRefPubMed Lu J, Papp LV, Fang J, Rodriguez-Nieto S, Zhivotovsky B, Holmgren A. Inhibition of mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activity. Cancer Res. 2006;66(8):4410–8.CrossRefPubMed
7.
go back to reference Barbosa E, Calzada F, Campos R. In vivo antigiardial activity of three flavonoids isolated of some medicinal plants used in Mexican traditional medicine for the treatment of diarrhea. J Ethnopharmacol. 2007;109(3):552–4.CrossRefPubMed Barbosa E, Calzada F, Campos R. In vivo antigiardial activity of three flavonoids isolated of some medicinal plants used in Mexican traditional medicine for the treatment of diarrhea. J Ethnopharmacol. 2007;109(3):552–4.CrossRefPubMed
8.
go back to reference Han J, Ye M, Xu M, Sun J, Wang B, Guo D. Characterization of flavonoids in the traditional Chinese herbal medicine-Huangqin by liquid chromatography coupled with electrospray ionization mass spectrometry. J Chromatogr B. 2007;848(2):355–62.CrossRef Han J, Ye M, Xu M, Sun J, Wang B, Guo D. Characterization of flavonoids in the traditional Chinese herbal medicine-Huangqin by liquid chromatography coupled with electrospray ionization mass spectrometry. J Chromatogr B. 2007;848(2):355–62.CrossRef
9.
go back to reference Jiang C, Schommer CK, Kim SY, Suh D-Y. Cloning and characterization of chalcone synthase from the moss. Physcomitrella Patens Phytochemistry. 2006;67(23):2531–40.CrossRefPubMed Jiang C, Schommer CK, Kim SY, Suh D-Y. Cloning and characterization of chalcone synthase from the moss. Physcomitrella Patens Phytochemistry. 2006;67(23):2531–40.CrossRefPubMed
10.
go back to reference Lillo C, Lea US, Ruoff P. Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ. 2008;31(5):587–601.CrossRefPubMed Lillo C, Lea US, Ruoff P. Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ. 2008;31(5):587–601.CrossRefPubMed
11.
go back to reference Wang SY, Bunce JA, Maas J. Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. J Agric Food Chem. 2003;51(15):4315–20.CrossRefPubMed Wang SY, Bunce JA, Maas J. Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. J Agric Food Chem. 2003;51(15):4315–20.CrossRefPubMed
12.
go back to reference Dumas Y, Dadomo M, Di Lucca G, Grolier P. Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. J Sci Food Agric. 2003;83(5):369–82.CrossRef Dumas Y, Dadomo M, Di Lucca G, Grolier P. Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. J Sci Food Agric. 2003;83(5):369–82.CrossRef
13.
go back to reference Yob N, Jofrry SM, Affandi M, Teh L, Salleh M, Zakaria Z. Zingiber zerumbet (L.) Smith: a review of its ethnomedicinal, chemical, and pharmacological uses. Evid Based Complement Altern Med. 2011; 2011. doi: 10.1155/2011/543216. Yob N, Jofrry SM, Affandi M, Teh L, Salleh M, Zakaria Z. Zingiber zerumbet (L.) Smith: a review of its ethnomedicinal, chemical, and pharmacological uses. Evid Based Complement Altern Med. 2011; 2011. doi: 10.​1155/​2011/​543216.
14.
go back to reference Nag A, Bandyopadhyay M, Mukherjee A. Antioxidant Activities and Cytotoxicity of Zingiber zerumbet (L.) Smith Rhizome. J Pharmacognosy Phytochemistry. 2013;2(3):102–8. Nag A, Bandyopadhyay M, Mukherjee A. Antioxidant Activities and Cytotoxicity of Zingiber zerumbet (L.) Smith Rhizome. J Pharmacognosy Phytochemistry. 2013;2(3):102–8.
15.
go back to reference Somchit M, Shukriyah M, Bustamam A, Zuraini A. Anti-pyretic and analgesic activity of Zingiber zerumbet. Int J Pharmacol. 2005;1(3):277–80.CrossRef Somchit M, Shukriyah M, Bustamam A, Zuraini A. Anti-pyretic and analgesic activity of Zingiber zerumbet. Int J Pharmacol. 2005;1(3):277–80.CrossRef
16.
go back to reference Kader G, Nikkon F, Rashid MA, Yeasmin T. Antimicrobial activities of the rhizome extract of Zingiber zerumbet Linn. Asian Pac J Trop Biomed. 2011;1(5):409–12.CrossRefPubMedPubMedCentral Kader G, Nikkon F, Rashid MA, Yeasmin T. Antimicrobial activities of the rhizome extract of Zingiber zerumbet Linn. Asian Pac J Trop Biomed. 2011;1(5):409–12.CrossRefPubMedPubMedCentral
17.
go back to reference Zakaria Z, Mohamad A, Chear C, Wong Y, Israf D, Sulaiman M. Antiinflammatory and antinociceptive activities of Zingiber zerumbet methanol extract in experimental model systems. Med Princ Pract. 2009;19(4):287–94.CrossRef Zakaria Z, Mohamad A, Chear C, Wong Y, Israf D, Sulaiman M. Antiinflammatory and antinociceptive activities of Zingiber zerumbet methanol extract in experimental model systems. Med Princ Pract. 2009;19(4):287–94.CrossRef
18.
go back to reference Chaung H-C, Ho C-T, Huang T-C. Anti-hypersensitive and anti-inflammatory activities of water extract of Zingiber zerumbet (L.) Smith. Food Agric Immunol. 2008;19(2):117–29.CrossRef Chaung H-C, Ho C-T, Huang T-C. Anti-hypersensitive and anti-inflammatory activities of water extract of Zingiber zerumbet (L.) Smith. Food Agric Immunol. 2008;19(2):117–29.CrossRef
19.
go back to reference Chien T, Chen L, Lee C, Lee F, Wang C. Anti-inflammatory constituents of Zingiber zerumbet. Food Chem. 2008;110(3):584–9.CrossRef Chien T, Chen L, Lee C, Lee F, Wang C. Anti-inflammatory constituents of Zingiber zerumbet. Food Chem. 2008;110(3):584–9.CrossRef
20.
go back to reference Ravindran P, Babu KN. Ginger: the genus Zingiber. Boca Raton, FL, US: CRC Press; 2004. Ravindran P, Babu KN. Ginger: the genus Zingiber. Boca Raton, FL, US: CRC Press; 2004.
21.
go back to reference Jayaprakasha G, Patil BS. In vitro evaluation of the antioxidant activities in fruit extracts from citron and blood orange. Food Chem. 2007;101(1):410–8.CrossRef Jayaprakasha G, Patil BS. In vitro evaluation of the antioxidant activities in fruit extracts from citron and blood orange. Food Chem. 2007;101(1):410–8.CrossRef
22.
go back to reference Singh R, Chidambara Murthy K, Jayaprakasha G. Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J Agric Food Chem. 2002;50(1):81–6.CrossRefPubMed Singh R, Chidambara Murthy K, Jayaprakasha G. Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J Agric Food Chem. 2002;50(1):81–6.CrossRefPubMed
23.
go back to reference Dudonne S, Vitrac X, Coutiere P, Woillez M, Mérillon J-M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem. 2009;57(5):1768–74.CrossRefPubMed Dudonne S, Vitrac X, Coutiere P, Woillez M, Mérillon J-M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem. 2009;57(5):1768–74.CrossRefPubMed
24.
go back to reference Priya ES, Selvakumar K, Bavithra S, Elumalai P, Arunkumar R, Singh PR, Mercy AB, Arunakaran J. Anti-cancer activity of quercetin in neuroblastoma: an in vitro approach. Neurol Sci. 2014;35(2):163–70.CrossRef Priya ES, Selvakumar K, Bavithra S, Elumalai P, Arunkumar R, Singh PR, Mercy AB, Arunakaran J. Anti-cancer activity of quercetin in neuroblastoma: an in vitro approach. Neurol Sci. 2014;35(2):163–70.CrossRef
25.
go back to reference Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem. 2001;49(6):3106–12.CrossRefPubMed Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem. 2001;49(6):3106–12.CrossRefPubMed
26.
go back to reference Behn H, Schurr U, Ulbrich A, Noga G. Development-dependent UV-B responses in red oak leaf lettuce (Lactuca sativa L.): Physiological mechanisms and significance for hardening. Eur J Hortic Sci. 2011;76(2):33. Behn H, Schurr U, Ulbrich A, Noga G. Development-dependent UV-B responses in red oak leaf lettuce (Lactuca sativa L.): Physiological mechanisms and significance for hardening. Eur J Hortic Sci. 2011;76(2):33.
27.
go back to reference Romani A, Pinelli P, Galardi C, Sani G, Cimato A, Heimler D. Polyphenols in greenhouse and open-air-grown lettuce. Food Chem. 2002;79(3):337–42.CrossRef Romani A, Pinelli P, Galardi C, Sani G, Cimato A, Heimler D. Polyphenols in greenhouse and open-air-grown lettuce. Food Chem. 2002;79(3):337–42.CrossRef
28.
go back to reference Min J, Meng-Xia X, Dong Z, Yuan L, Xiao-Yu L, Xing C. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. J Mol Struct. 2004;692(1):71–80.CrossRef Min J, Meng-Xia X, Dong Z, Yuan L, Xiao-Yu L, Xing C. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. J Mol Struct. 2004;692(1):71–80.CrossRef
29.
go back to reference Prior RL, Cao G, Martin A, Sofic E, McEwen J, O’Brien C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agric Food Chem. 1998;46(7):2686–93.CrossRef Prior RL, Cao G, Martin A, Sofic E, McEwen J, O’Brien C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agric Food Chem. 1998;46(7):2686–93.CrossRef
30.
go back to reference van der Sluis AA, Dekker M, de Jager A, Jongen WM. Activity and concentration of polyphenolic antioxidants in apple: effect of cultivar, harvest year, and storage conditions. J Agric Food Chem. 2001;49(8):3606–13.CrossRefPubMed van der Sluis AA, Dekker M, de Jager A, Jongen WM. Activity and concentration of polyphenolic antioxidants in apple: effect of cultivar, harvest year, and storage conditions. J Agric Food Chem. 2001;49(8):3606–13.CrossRefPubMed
31.
go back to reference Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001;126(2):485–93.CrossRefPubMedPubMedCentral Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001;126(2):485–93.CrossRefPubMedPubMedCentral
32.
go back to reference Nicholson RL, Hammerschmidt R. Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol. 1992;30(1):369–89.CrossRef Nicholson RL, Hammerschmidt R. Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol. 1992;30(1):369–89.CrossRef
33.
go back to reference Yuting C, Rongliang Z, Zhongjian J, Yong J. Flavonoids as superoxide scavengers and antioxidants. Free Radic Biol Med. 1990;9(1):19–21.CrossRef Yuting C, Rongliang Z, Zhongjian J, Yong J. Flavonoids as superoxide scavengers and antioxidants. Free Radic Biol Med. 1990;9(1):19–21.CrossRef
34.
go back to reference Javanmardi J, Stushnoff C, Locke E, Vivanco J. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem. 2003;83(4):547–50.CrossRef Javanmardi J, Stushnoff C, Locke E, Vivanco J. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem. 2003;83(4):547–50.CrossRef
35.
go back to reference Firuzi O, Lacanna A, Petrucci R, Marrosu G, Saso L. Evaluation of the antioxidant activity of flavonoids by “ferric reducing antioxidant power” assay and cyclic voltammetry. Biochimica et Biophysica Acta (BBA)-General Subjects. 2005;1721(1):174–84.CrossRef Firuzi O, Lacanna A, Petrucci R, Marrosu G, Saso L. Evaluation of the antioxidant activity of flavonoids by “ferric reducing antioxidant power” assay and cyclic voltammetry. Biochimica et Biophysica Acta (BBA)-General Subjects. 2005;1721(1):174–84.CrossRef
36.
37.
go back to reference Ghasemzadeh A, Jaafar HZ, Rahmat A, Devarajan T. Evaluation of Bioactive Compounds, Pharmaceutical Quality, and Anticancer Activity of Curry Leaf (Murraya koenigii L.). Evid Based Complement Altern Med. 2014; 2014. Ghasemzadeh A, Jaafar HZ, Rahmat A, Devarajan T. Evaluation of Bioactive Compounds, Pharmaceutical Quality, and Anticancer Activity of Curry Leaf (Murraya koenigii L.). Evid Based Complement Altern Med. 2014; 2014.
38.
go back to reference Helen M, Nizzy A, Jegatheesh T. Phytochemical characterization and antimicrobial activity of shampoo ginger (Zingiber zerumbet) from Tamil Nadu. Asian J Microbiol Biotechnol Environ Sci. 2009;11(3):625–8. Helen M, Nizzy A, Jegatheesh T. Phytochemical characterization and antimicrobial activity of shampoo ginger (Zingiber zerumbet) from Tamil Nadu. Asian J Microbiol Biotechnol Environ Sci. 2009;11(3):625–8.
39.
go back to reference Farzaneh V, Carvalho IS. A review of the health benefit potentials of herbal plant infusions and their mechanism of actions. Ind Crop Prod. 2015;65:247–58.CrossRef Farzaneh V, Carvalho IS. A review of the health benefit potentials of herbal plant infusions and their mechanism of actions. Ind Crop Prod. 2015;65:247–58.CrossRef
Metadata
Title
Variation in secondary metabolite production as well as antioxidant and antibacterial activities of Zingiber zerumbet (L.) at different stages of growth
Authors
Ali Ghasemzadeh
Hawa Z. E. Jaafar
Sadegh Ashkani
Asmah Rahmat
Abdul Shukor Juraimi
Adam Puteh
Mahmud Tengku Muda Mohamed
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2016
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-016-1072-6

Other articles of this Issue 1/2016

BMC Complementary Medicine and Therapies 1/2016 Go to the issue