Skip to main content
Top
Published in: Trials 1/2024

Open Access 01-12-2024 | Vancomycin | Study protocol

Impact of model-informed precision dosing in adults receiving vancomycin via continuous infusion: a randomized, controlled clinical trial

Authors: Glenn Van Wynsberge, Veerle Grootaert, Franky Buyle, Jens Van Praet, Roos Colman, Ine Moors, Annemie Somers, Diana Huis in ‘t Veld, Pieter De Cock, on behalf of the VANC-DOS Consortium

Published in: Trials | Issue 1/2024

Login to get access

Abstract

Background

Vancomycin is a commonly prescribed antibiotic to treat gram-positive infections. The efficacy of vancomycin is known to be directly related to the pharmacokinetic/pharmacodynamic (PK/PD) index of the area under the concentration-time curve (AUC) divided by the minimal inhibitory concentration (MIC) of the pathogen. However, in most countries, steady-state plasma concentrations are used as a surrogate parameter of target AUC/MIC, but this practice has some drawbacks. Hence, direct AUC-guided monitoring of vancomycin using model-informed precision dosing (MIPD) tools has been proposed for earlier attainment of target concentrations and reducing vancomycin-related nephrotoxicity. However, solid scientific evidence for these benefits in clinical practice is still lacking. This randomized controlled trial (RCT) aims to investigate the clinical utility of MIPD dosing of vancomycin administered via continuous infusion in hospitalized adults.

Methods

Participants from 11 wards at two Belgian hospitals are randomly allocated to the intervention group or the standard-of-care comparator group. In the intervention group, clinical pharmacists perform dose calculations using CE-labeled MIPD software and target an AUC24h of 400 to 600 mg × h/L, whereas patients in the comparator group receive standard-of-care dosing and monitoring according to the institutional guidelines. The primary endpoint is the proportion of patients reaching the target AUC24h/MIC of 400–600 between 48 and 72 h after start of vancomycin treatment. Secondary endpoints are the proportion of patients with (worsening) acute kidney injury (AKI) during and until 48 h after stop of vancomycin treatment, the proportion of patients reaching target AUC24h/MIC of 400–600 between 72 and 96 h after start of vancomycin treatment, and the proportion of time within the target AUC24h/MIC of 400–600.

Discussion

This trial will clarify the propagated benefits and provide new insights into how to optimally monitor vancomycin treatment.

Trial registration

EudraCT number: 2021-003670-31. Registered June 28, 2021. ClinicalTrials.gov identifier: NCT05535075. Registered September 10, 2022. Protocol version 3, protocol date: April 21, 2023.
Literature
1.
go back to reference Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–55.CrossRefPubMed Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–55.CrossRefPubMed
2.
go back to reference Kabbara WK, El-Khoury G, Chamas NR. Prospective evaluation of vancomycin therapeutic usage and trough levels monitoring. J Infect Dev Ctries. 2018;12(11):978–84.CrossRefPubMed Kabbara WK, El-Khoury G, Chamas NR. Prospective evaluation of vancomycin therapeutic usage and trough levels monitoring. J Infect Dev Ctries. 2018;12(11):978–84.CrossRefPubMed
3.
go back to reference Rybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediat. Am J Health Syst Pharm. 2020;77(11):835–64.CrossRefPubMed Rybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediat. Am J Health Syst Pharm. 2020;77(11):835–64.CrossRefPubMed
4.
go back to reference Aljefri DM, Avedissian SN, Rhodes NJ, Postelnick MJ, Nguyen K, Scheetz MH. Vancomycin area under the curve and acute kidney injury: a meta-analysis. Clin Infect Dis. 2019;69(11):1881–7.CrossRefPubMedPubMedCentral Aljefri DM, Avedissian SN, Rhodes NJ, Postelnick MJ, Nguyen K, Scheetz MH. Vancomycin area under the curve and acute kidney injury: a meta-analysis. Clin Infect Dis. 2019;69(11):1881–7.CrossRefPubMedPubMedCentral
5.
go back to reference Tängdén T, Ramos Martín V, Felton TW, Nielsen EI, Marchand S, Brüggemann RJ, et al. The role of infection models and PK/PD modelling for optimising care of critically ill patients with severe infections. Intensive Care Med. 2017;43(7):1021–32.CrossRefPubMed Tängdén T, Ramos Martín V, Felton TW, Nielsen EI, Marchand S, Brüggemann RJ, et al. The role of infection models and PK/PD modelling for optimising care of critically ill patients with severe infections. Intensive Care Med. 2017;43(7):1021–32.CrossRefPubMed
6.
go back to reference Darwich AS, Ogungbenro K, Vinks AA, Powell JR, Reny JL, Marsousi N, et al. Why has model- informed precision dosing not yet become common clinical reality? Lessons from the past and a roadmap for the future. Clin Pharmacol Ther. 2017;101(5):646–56.CrossRefPubMed Darwich AS, Ogungbenro K, Vinks AA, Powell JR, Reny JL, Marsousi N, et al. Why has model- informed precision dosing not yet become common clinical reality? Lessons from the past and a roadmap for the future. Clin Pharmacol Ther. 2017;101(5):646–56.CrossRefPubMed
7.
go back to reference Norris RL, Martin JH, Thompson E, Ray JE, Fullinfaw RO, Joyce D, et al. Current status of therapeutic drug monitoring in Australia and New Zealand: a need for improved assay evaluation, best practice guidelines, and professional development. Ther Drug Monit. 2010;32(5):615–23.CrossRefPubMed Norris RL, Martin JH, Thompson E, Ray JE, Fullinfaw RO, Joyce D, et al. Current status of therapeutic drug monitoring in Australia and New Zealand: a need for improved assay evaluation, best practice guidelines, and professional development. Ther Drug Monit. 2010;32(5):615–23.CrossRefPubMed
8.
go back to reference Neely MN, Kato L, Youn G, Kraler L, Bayard D, van Guilder M, et al. Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing. Antimicrob Agents Chemother. 2018;62(2). Neely MN, Kato L, Youn G, Kraler L, Bayard D, van Guilder M, et al. Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing. Antimicrob Agents Chemother. 2018;62(2).
11.
go back to reference Ampe E, Delaere B, Hecq JD, Tulkens PM, Glupczynski Y. Implementation of a protocol for administration of vancomycin by continuous infusion: pharmacokinetic, pharmacodynamic and toxicological aspects. Int J Antimicrob Agents. 2013;41(5):439–46.CrossRefPubMed Ampe E, Delaere B, Hecq JD, Tulkens PM, Glupczynski Y. Implementation of a protocol for administration of vancomycin by continuous infusion: pharmacokinetic, pharmacodynamic and toxicological aspects. Int J Antimicrob Agents. 2013;41(5):439–46.CrossRefPubMed
14.
go back to reference Colin PJ, Allegaert K, Thomson AH, Touw DJ, Dolton M, de Hoog M, et al. Vancomycin pharmacokinetics throughout life: results from a pooled population analysis and evaluation of current dosing recommendations. Clin Pharmacokinet. 2019;58(6):767–80.CrossRefPubMed Colin PJ, Allegaert K, Thomson AH, Touw DJ, Dolton M, de Hoog M, et al. Vancomycin pharmacokinetics throughout life: results from a pooled population analysis and evaluation of current dosing recommendations. Clin Pharmacokinet. 2019;58(6):767–80.CrossRefPubMed
16.
go back to reference Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–84.CrossRefPubMed Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–84.CrossRefPubMed
18.
go back to reference Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869.CrossRefPubMedPubMedCentral Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869.CrossRefPubMedPubMedCentral
Metadata
Title
Impact of model-informed precision dosing in adults receiving vancomycin via continuous infusion: a randomized, controlled clinical trial
Authors
Glenn Van Wynsberge
Veerle Grootaert
Franky Buyle
Jens Van Praet
Roos Colman
Ine Moors
Annemie Somers
Diana Huis in ‘t Veld
Pieter De Cock
on behalf of the VANC-DOS Consortium
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Trials / Issue 1/2024
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-024-07965-6

Other articles of this Issue 1/2024

Trials 1/2024 Go to the issue