Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Correspondence

Validity of a Cochrane Systematic Review and meta-analysis for determining the safety of vitamin E

Authors: Christopher J. Oliver, Stephen P. Myers

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

The public safety of α-tocopherol has been called in question by several meta-analyses which have raised concern among regulatory authorities. The objective of this study was to evaluate the Cochrane Database Systematic Review 2012 (CD007176) which concludes that α-tocopherol forms of vitamin E have a statistically significant effect on mortality, by assessing the trials and datasets used and determining their effect upon the primary outcome.
The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC), a factorial design study of Finnish smokers was a pivotal paper in the Cochrane Review owing to the high mortality rate observed which resulted in a substantial weighting (42.6%) in the meta-analysis. The Cochrane meta-analysis used a 3 cell analytical method comparing all vitamin E cells (vitamin E alone plus vitamin E + β-carotene) to the placebo only cell. This had the unfortunate effect of incorrectly inflating the mortality risk attributed to vitamin E by not balancing the contribution to mortality of the β-carotene intervention. Re-analysis of the ATBC trial using data derived from the more generally accepted ‘inside the table’ (2 cell – vitamin E versus placebo) or ‘at the margins’ (4 cell – all vitamin E versus all non-vitamin E) analytical methods demonstrates a statistically non-significant result.
The data from the ATBC study has been given in 5 datasets (the trial alone and four extended post-trial follow-up time periods). Using the 3 cell analysis method only the 6 and 8-year (used in the meta-analysis) follow-up periods were statistically significant. Using the 2 or 4 cell method the outcome remains non-significant over all time periods.
The impartiality of excluding trials with zero mortality is also examined and questioned.
This paper raises concerns overall as to the appropriateness of datasets chosen, the validity of methods and generalisability of results when using meta-analysis as a tool to determine safety. Issues raised in this paper are not unique to the Cochrane study in question. Until we have new tools, there may be a need to rely on conventional narrative systematic literature synthesis in the assessment of safety or contain our results to specific sub-populations where more conclusive results can be determined.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bjelakovic G, Nikolova D, Gluud LL, et al. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA. 2007;297:842–57.CrossRefPubMed Bjelakovic G, Nikolova D, Gluud LL, et al. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA. 2007;297:842–57.CrossRefPubMed
2.
go back to reference Bjelakovic G, Nikolova D, Gluud L, et al. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev. 2008:CD007176. Bjelakovic G, Nikolova D, Gluud L, et al. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev. 2008:CD007176.
3.
go back to reference Bjelakovic G, Nikolova D, Gluud LL, et al. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev. 2012;3:CD007176. Bjelakovic G, Nikolova D, Gluud LL, et al. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev. 2012;3:CD007176.
4.
go back to reference Miller ER III, Pastor-Barriuso R, Dalal D, et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142:37–46.CrossRefPubMed Miller ER III, Pastor-Barriuso R, Dalal D, et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142:37–46.CrossRefPubMed
5.
go back to reference Gerss J, Kopcke W. The questionable association of vitamin E supplementation and mortality--inconsistent results of different meta-analytic approaches. Cell Mol Biol (Noisy-le-grand). 2009;55(Suppl):OL1111–20. Gerss J, Kopcke W. The questionable association of vitamin E supplementation and mortality--inconsistent results of different meta-analytic approaches. Cell Mol Biol (Noisy-le-grand). 2009;55(Suppl):OL1111–20.
6.
go back to reference Biesalski HK, Grune T, Tinz J, et al. Reexamination of a meta-analysis of the effect of antioxidant supplementation on mortality and health in randomized trials. Nutrients. 2010;2:929–49.CrossRefPubMedPubMedCentral Biesalski HK, Grune T, Tinz J, et al. Reexamination of a meta-analysis of the effect of antioxidant supplementation on mortality and health in randomized trials. Nutrients. 2010;2:929–49.CrossRefPubMedPubMedCentral
7.
go back to reference The Alpha-Tocopherol BCCPSG. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. N Engl J Med. 1994;330:1029–35.CrossRef The Alpha-Tocopherol BCCPSG. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. N Engl J Med. 1994;330:1029–35.CrossRef
8.
go back to reference Virtamo J, Pietinen P, Huttunen JK, et al. Incidence of cancer and mortality following alpha-tocopherol and beta-carotene supplementation: a postintervention follow-up. JAMA. 2003;290:476–85.CrossRefPubMed Virtamo J, Pietinen P, Huttunen JK, et al. Incidence of cancer and mortality following alpha-tocopherol and beta-carotene supplementation: a postintervention follow-up. JAMA. 2003;290:476–85.CrossRefPubMed
9.
go back to reference Virtamo J, Taylor PR, Kontto J, et al. Effects of alpha-tocopherol and beta-carotene supplementation on cancer incidence and mortality: 18-Year postintervention follow-up of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Int J Cancer. 2014;135:178–85.CrossRefPubMed Virtamo J, Taylor PR, Kontto J, et al. Effects of alpha-tocopherol and beta-carotene supplementation on cancer incidence and mortality: 18-Year postintervention follow-up of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Int J Cancer. 2014;135:178–85.CrossRefPubMed
10.
go back to reference McAlister FA, Straus SE, Sackett DL, et al. Analysis and reporting of factorial trials: a systematic review. JAMA. 2003;289:2545–53.CrossRefPubMed McAlister FA, Straus SE, Sackett DL, et al. Analysis and reporting of factorial trials: a systematic review. JAMA. 2003;289:2545–53.CrossRefPubMed
11.
go back to reference Jones D. Of medicine and meta-analysis. Nat Rev Drug Discov. 2008;7:376–7.CrossRef Jones D. Of medicine and meta-analysis. Nat Rev Drug Discov. 2008;7:376–7.CrossRef
12.
go back to reference Traber MG, Winklhofer-Roob BM, Roob JM, et al. Vitamin E kinetics in smokers and nonsmokers. Free Radic Biol Med. 2001;31:1368–74.CrossRefPubMed Traber MG, Winklhofer-Roob BM, Roob JM, et al. Vitamin E kinetics in smokers and nonsmokers. Free Radic Biol Med. 2001;31:1368–74.CrossRefPubMed
14.
go back to reference Blatt DH, Pryor WA, Mata JE, et al. Re-evaluation of the relative potency of synthetic and natural alpha-tocopherol: experimental and clinical observations. J Nutr Biochem. 2004;15:380–95.CrossRefPubMed Blatt DH, Pryor WA, Mata JE, et al. Re-evaluation of the relative potency of synthetic and natural alpha-tocopherol: experimental and clinical observations. J Nutr Biochem. 2004;15:380–95.CrossRefPubMed
15.
go back to reference Omenn GS, Goodman GE, Thornquist MD, et al. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J Natl Cancer Inst. 1996;88:1550–9.CrossRefPubMed Omenn GS, Goodman GE, Thornquist MD, et al. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J Natl Cancer Inst. 1996;88:1550–9.CrossRefPubMed
16.
17.
go back to reference Oliver C, Myers S. Validity of a Cochrane systematic review and meta-analysis for determining the safety of vitamin E. BMC Complement Altern Med. 2017; [in press] Oliver C, Myers S. Validity of a Cochrane systematic review and meta-analysis for determining the safety of vitamin E. BMC Complement Altern Med. 2017; [in press]
18.
go back to reference Bailey RL, Gahche JJ, Lentino CV, Dwyer JT, Engel JS, Thomas PR, Betz JM, Sempos CT, Picciano MF. Dietary supplement use in the United States, 2003–2006. J Nutr. 2011;141(2):261–6.CrossRefPubMed Bailey RL, Gahche JJ, Lentino CV, Dwyer JT, Engel JS, Thomas PR, Betz JM, Sempos CT, Picciano MF. Dietary supplement use in the United States, 2003–2006. J Nutr. 2011;141(2):261–6.CrossRefPubMed
19.
go back to reference Bjelakovic G, Nikolova D, Gluud C. Meta-regression analyses, meta-analyses, and Trial Sequential Analyses of the effects of supplementation with beta-carotene, vitamin A, and vitamin E singly or in different combinations on all-cause mortality: do we have evidence for lack of harm? PLoS One. 2013;8(9):e74558.CrossRefPubMedPubMedCentral Bjelakovic G, Nikolova D, Gluud C. Meta-regression analyses, meta-analyses, and Trial Sequential Analyses of the effects of supplementation with beta-carotene, vitamin A, and vitamin E singly or in different combinations on all-cause mortality: do we have evidence for lack of harm? PLoS One. 2013;8(9):e74558.CrossRefPubMedPubMedCentral
21.
go back to reference Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the selenium and vitamin E cancer prevention trial (SELECT). JAMA. 2009;301(1):39–51.CrossRefPubMed Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the selenium and vitamin E cancer prevention trial (SELECT). JAMA. 2009;301(1):39–51.CrossRefPubMed
23.
go back to reference Guallar E, Hanley DF, Miller ER III. An editorial update: annus horribilis for vitamin E. Ann Intern Med. 2005;143(2):143–5.CrossRefPubMed Guallar E, Hanley DF, Miller ER III. An editorial update: annus horribilis for vitamin E. Ann Intern Med. 2005;143(2):143–5.CrossRefPubMed
24.
go back to reference Guallar E, Stranges S, Mulrow C, Appel LJ, Miller ER III. Enough is enough: stop wasting money on vitamin and mineral supplements. Ann Intern Med. 2013;159(12):850–1.CrossRefPubMed Guallar E, Stranges S, Mulrow C, Appel LJ, Miller ER III. Enough is enough: stop wasting money on vitamin and mineral supplements. Ann Intern Med. 2013;159(12):850–1.CrossRefPubMed
Metadata
Title
Validity of a Cochrane Systematic Review and meta-analysis for determining the safety of vitamin E
Authors
Christopher J. Oliver
Stephen P. Myers
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-1906-x

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue