Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2020

Open Access 01-12-2020 | Research article

Validity and bias on the online active Australia survey: activity level and participant factors associated with self-report bias

Authors: Rachel G. Curtis, Timothy Olds, Ronald Plotnikoff, Corneel Vandelanotte, Sarah Edney, Jillian Ryan, Carol Maher

Published in: BMC Medical Research Methodology | Issue 1/2020

Login to get access

Abstract

Background

This study examined the criterion validity of the online Active Australia Survey, using accelerometry as the criterion, and whether self-report bias was related to level of activity, age, sex, education, body mass index and health-related quality of life.

Methods

The online Active Australia Survey was validated against the GENEActiv accelerometer as a direct measure of activity. Participants (n = 344) wore an accelerometer for 7 days, completed the Active Australia Survey, and reported their health and demographic characteristics. A Spearman’s rank coefficient examined the association between minutes of moderate-to-vigorous physical activity recorded on the Active Australia Survey and GENEActiv accelerometer. A Bland-Altman plot illustrated self-report bias (the difference between methods). Linear mixed effects modelling was used to examine whether participant factors predicted self-report bias.

Results

The association between moderate-to-vigorous physical activity reported on the online Active Australia Survey and accelerometer was significant (rs = .27, p < .001). Participants reported 4 fewer minutes per day on the Active Australia Survey than was recorded by accelerometry (95% limits of agreement −104 – 96 min) but the difference was not significant (t(343) = −1.40, p = .16). Self-report bias was negatively associated with minutes of accelerometer-recorded moderate-to-vigorous physical activity and positively associated with mental health-related quality of life.

Conclusions

The online Active Australia Survey showed limited criterion validity against accelerometry. Self-report bias was related to activity level and mental health-related quality of life. Caution is recommended when interpreting studies using the online Active Australia Survey.
Literature
1.
go back to reference Sylvia LG, Bernstein EE, Hubbard JL, Keating L, Anderson EJ. Practical guide to measuring physical activity. J Acad Nutr Diet. 2014;114(2):199–208.CrossRef Sylvia LG, Bernstein EE, Hubbard JL, Keating L, Anderson EJ. Practical guide to measuring physical activity. J Acad Nutr Diet. 2014;114(2):199–208.CrossRef
2.
go back to reference Sallis JF, Saelens BE. Assessment of physical activity by self-report: status, limitations, and future directions. Res Q Exerc Sport. 2000;71(2):1–14.CrossRef Sallis JF, Saelens BE. Assessment of physical activity by self-report: status, limitations, and future directions. Res Q Exerc Sport. 2000;71(2):1–14.CrossRef
3.
go back to reference Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5(1):56.CrossRef Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5(1):56.CrossRef
4.
go back to reference Bauman A, Ford I, Armstrong T. Trends in population levels of reported physical activity in Australia, 1997, 1999 and 2000. Canberra: Australian Sports Commission; 2001. Bauman A, Ford I, Armstrong T. Trends in population levels of reported physical activity in Australia, 1997, 1999 and 2000. Canberra: Australian Sports Commission; 2001.
5.
go back to reference Australian Institute of Health and Welfare (AIHW). The Active Australia survey: a guide and manual for implementation, analysis and reporting. Canberra: AIHW; 2003. Australian Institute of Health and Welfare (AIHW). The Active Australia survey: a guide and manual for implementation, analysis and reporting. Canberra: AIHW; 2003.
6.
go back to reference Fjeldsoe BS, Winkler EAH, Marshall AL, Eakin EG, Reeves MM. Active adults recall their physical activity differently to less active adults: test–retest reliability and validity of a physical activity survey. Health Promot J Austr. 2013;24(1):26–31.CrossRef Fjeldsoe BS, Winkler EAH, Marshall AL, Eakin EG, Reeves MM. Active adults recall their physical activity differently to less active adults: test–retest reliability and validity of a physical activity survey. Health Promot J Austr. 2013;24(1):26–31.CrossRef
7.
go back to reference Gabriel KP, McClain JJ, Lee CD, Swan PD, Alvar BA, Mitros MR, et al. Evaluation of physical activity measures used in middle-aged women. Med Sci Sports Exerc. 2009;41(7):1403–12.CrossRef Gabriel KP, McClain JJ, Lee CD, Swan PD, Alvar BA, Mitros MR, et al. Evaluation of physical activity measures used in middle-aged women. Med Sci Sports Exerc. 2009;41(7):1403–12.CrossRef
8.
go back to reference Brown WJ, Burton NW, Marshall AL, Miller YD. Reliability and validity of a modified self-administered version of the active Australia physical activity survey in a sample of mid-age women. Aust N Z J Public Health. 2008;32(6):535–41.CrossRef Brown WJ, Burton NW, Marshall AL, Miller YD. Reliability and validity of a modified self-administered version of the active Australia physical activity survey in a sample of mid-age women. Aust N Z J Public Health. 2008;32(6):535–41.CrossRef
9.
go back to reference Freene N, Waddington G, Chesworth W, Davey R, Cochrane T. Validating two self-report physical activity measures in middle-aged adults completing a group exercise or home-based physical activity program. J Sci Med Sport. 2014;17(6):611–6.CrossRef Freene N, Waddington G, Chesworth W, Davey R, Cochrane T. Validating two self-report physical activity measures in middle-aged adults completing a group exercise or home-based physical activity program. J Sci Med Sport. 2014;17(6):611–6.CrossRef
10.
go back to reference Creamer M, Bowles HR, von Hofe B, Gabriel KP, Kohl HW III, Bauman A. Utility of computer-assisted approaches for population surveillance of physical activity. J Phys Act Health. 2014;11(6):1111–9.CrossRef Creamer M, Bowles HR, von Hofe B, Gabriel KP, Kohl HW III, Bauman A. Utility of computer-assisted approaches for population surveillance of physical activity. J Phys Act Health. 2014;11(6):1111–9.CrossRef
11.
go back to reference Vandelanotte C, Duncan MJ, Stanton R, Rosenkranz RR, Caperchione CM, Rebar AL, et al. Validity and responsiveness to change of the active Australia survey according to gender, age, BMI, education, and physical activity level and awareness. BMC Public Health. 2019;19:407.CrossRef Vandelanotte C, Duncan MJ, Stanton R, Rosenkranz RR, Caperchione CM, Rebar AL, et al. Validity and responsiveness to change of the active Australia survey according to gender, age, BMI, education, and physical activity level and awareness. BMC Public Health. 2019;19:407.CrossRef
12.
go back to reference Cerin E, Cain KL, Oyeyemi AL, Owen N, Conway TL, Cochrane TOM, et al. Correlates of agreement between accelerometry and self-reported physical activity. Med Sci Sports Exerc. 2016;48(6):1075–84.CrossRef Cerin E, Cain KL, Oyeyemi AL, Owen N, Conway TL, Cochrane TOM, et al. Correlates of agreement between accelerometry and self-reported physical activity. Med Sci Sports Exerc. 2016;48(6):1075–84.CrossRef
13.
go back to reference Watkinson C, van Sluijs EMF, Sutton S, Hardeman W, Corder K, Griffin SJ. Overestimation of physical activity level is associated with lower BMI: a cross-sectional analysis. Int J Behav Nutr Phys Act. 2010;7(1):68.CrossRef Watkinson C, van Sluijs EMF, Sutton S, Hardeman W, Corder K, Griffin SJ. Overestimation of physical activity level is associated with lower BMI: a cross-sectional analysis. Int J Behav Nutr Phys Act. 2010;7(1):68.CrossRef
14.
15.
go back to reference Edney S, Plotnikoff R, Vandelanotte C, Olds T, De Bourdeaudhuij I, Ryan J, et al. “Active Team” a social and gamified app-based physical activity intervention: randomised controlled trial study protocol. BMC Public Health. 2017;17(1):859.CrossRef Edney S, Plotnikoff R, Vandelanotte C, Olds T, De Bourdeaudhuij I, Ryan J, et al. “Active Team” a social and gamified app-based physical activity intervention: randomised controlled trial study protocol. BMC Public Health. 2017;17(1):859.CrossRef
16.
go back to reference Esliger DW, Rowlands AV, Hurst TL, Catt M, Murray P, Eston RG. Validation of the GENEA accelerometer. Med Sci Sports Exerc. 2011;43(6):1085–93.CrossRef Esliger DW, Rowlands AV, Hurst TL, Catt M, Murray P, Eston RG. Validation of the GENEA accelerometer. Med Sci Sports Exerc. 2011;43(6):1085–93.CrossRef
17.
go back to reference Trost SG, McIver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37(Suppl 11):S531–43.CrossRef Trost SG, McIver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37(Suppl 11):S531–43.CrossRef
18.
go back to reference Ware JE, Kosinski M, Keller SD. SF-12: how to score the SF-12 physical and mental health summary scales. Boston: The Health Institute, New England Medical Center; 1998. Ware JE, Kosinski M, Keller SD. SF-12: how to score the SF-12 physical and mental health summary scales. Boston: The Health Institute, New England Medical Center; 1998.
19.
go back to reference Ware JE, Kosinski M, Keller SD. A 12-item short-form health survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996;34(3):220–33.CrossRef Ware JE, Kosinski M, Keller SD. A 12-item short-form health survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996;34(3):220–33.CrossRef
20.
go back to reference Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.CrossRef Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.CrossRef
21.
go back to reference Yuan K-H, Bentler PM. Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. Sociol Methodol. 2000;30(1):165–200.CrossRef Yuan K-H, Bentler PM. Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. Sociol Methodol. 2000;30(1):165–200.CrossRef
22.
go back to reference Singer JD, Willett JB. Applied longitudinal data analysis: modeling change and event occurrence. New York: Oxford University Press; 2003.CrossRef Singer JD, Willett JB. Applied longitudinal data analysis: modeling change and event occurrence. New York: Oxford University Press; 2003.CrossRef
23.
go back to reference Adams SA, Matthews CE, Ebbeling CB, Moore CG, Cunningham JE, Fulton J, et al. The effect of social desirability and social approval on self-reports of physical activity. Am J Epidemiol. 2005;161(4):389–98.CrossRef Adams SA, Matthews CE, Ebbeling CB, Moore CG, Cunningham JE, Fulton J, et al. The effect of social desirability and social approval on self-reports of physical activity. Am J Epidemiol. 2005;161(4):389–98.CrossRef
24.
go back to reference Plasqui G, Bonomi AG, Westerterp KR. Daily physical activity assessment with accelerometers: new insights and validation studies. Obes Rev. 2013;14(6):451–62.CrossRef Plasqui G, Bonomi AG, Westerterp KR. Daily physical activity assessment with accelerometers: new insights and validation studies. Obes Rev. 2013;14(6):451–62.CrossRef
25.
go back to reference Scott JJ, Rowlands AV, Cliff DP, Morgan PJ, Plotnikoff RC, Lubans DR. Comparability and feasibility of wrist- and hip-worn accelerometers in free-living adolescents. J Sci Med Sport. 2017;20(12):1101–6.CrossRef Scott JJ, Rowlands AV, Cliff DP, Morgan PJ, Plotnikoff RC, Lubans DR. Comparability and feasibility of wrist- and hip-worn accelerometers in free-living adolescents. J Sci Med Sport. 2017;20(12):1101–6.CrossRef
26.
go back to reference van Hees VT, Renström F, Wright A, Gradmark A, Catt M, Chen KY, et al. Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer. PLoS One. 2011;6(7):e22922.CrossRef van Hees VT, Renström F, Wright A, Gradmark A, Catt M, Chen KY, et al. Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer. PLoS One. 2011;6(7):e22922.CrossRef
27.
go back to reference Rosenberger ME, Haskell WL, Albinali F, Mota S, Nawyn J, Intille S. Estimating activity and sedentary behavior from an accelerometer on the hip or wrist. Med Sci Sports Exerc. 2013;45(5):964–75.CrossRef Rosenberger ME, Haskell WL, Albinali F, Mota S, Nawyn J, Intille S. Estimating activity and sedentary behavior from an accelerometer on the hip or wrist. Med Sci Sports Exerc. 2013;45(5):964–75.CrossRef
28.
go back to reference Sirard JR, Forsyth A, Oakes JM, Schmitz KH. Accelerometer test-retest reliability by data processing algorithms: results from the twin cities walking study. J Phys Act Health. 2011;8(5):668–74.CrossRef Sirard JR, Forsyth A, Oakes JM, Schmitz KH. Accelerometer test-retest reliability by data processing algorithms: results from the twin cities walking study. J Phys Act Health. 2011;8(5):668–74.CrossRef
Metadata
Title
Validity and bias on the online active Australia survey: activity level and participant factors associated with self-report bias
Authors
Rachel G. Curtis
Timothy Olds
Ronald Plotnikoff
Corneel Vandelanotte
Sarah Edney
Jillian Ryan
Carol Maher
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2020
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-020-0896-4

Other articles of this Issue 1/2020

BMC Medical Research Methodology 1/2020 Go to the issue