Skip to main content
Top
Published in: Medical Molecular Morphology 4/2018

01-12-2018 | Original Paper

Validation and application of a novel APC antibody in western blotting, immunoprecipitation, and immunohistochemistry

Authors: Nami O. Yamada, Wenduerma, Shuji Matsuda, Takao Senda

Published in: Medical Molecular Morphology | Issue 4/2018

Login to get access

Abstract

Adenomatous polyposis coli (APC) is a large protein with multiple binding partners, suggesting diverse functions besides its well-known role in the destruction of β-catenin. To elucidate these complex functions, it is crucial to evaluate the precise subcellular distribution of APC within a cell and tissue. However, most of the commercially available anti-APC antibodies can only be used for limited applications, resulting in the use of independently generated antibodies. This has led to various discrepancies between studies as a common antibody has not been established. In this study, we generated an antibody against the c-terminal domain of human APC, designated APC-C antibody, and evaluated its specificity and application in various immunological methods. Our data indicate that this novel APC-C antibody is a specific and versatile antibody that can be used in western blotting, immunoprecipitation, immunocytochemistry, and immunohistochemistry. Widespread use of this APC antibody will help enhance our understanding of APC’s function in both normal and cancer cell biology.
Literature
1.
go back to reference Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D et al (1991) Identification of FAP locus genes from chromosome 5q21. Science 253(5020):661–665CrossRef Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D et al (1991) Identification of FAP locus genes from chromosome 5q21. Science 253(5020):661–665CrossRef
2.
go back to reference Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B, Kinzler KW (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359(6392):235–237CrossRef Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B, Kinzler KW (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359(6392):235–237CrossRef
3.
go back to reference Wong MH, Hermiston ML, Syder AJ, Gordon JI (1996) Forced expression of the tumor suppressor adenomatosis polyposis coli protein induces disordered cell migration in the intestinal epithelium. Proc Natl Acad Sci USA 93(18):9588–9593CrossRef Wong MH, Hermiston ML, Syder AJ, Gordon JI (1996) Forced expression of the tumor suppressor adenomatosis polyposis coli protein induces disordered cell migration in the intestinal epithelium. Proc Natl Acad Sci USA 93(18):9588–9593CrossRef
4.
go back to reference Midgley CA, White S, Howitt R, Save V, Dunlop MG, Hall PA, Lane DP, Wyllie AH, Bubb VJ (1997) APC expression in normal human tissues. J Pathol 181(4):426–433CrossRef Midgley CA, White S, Howitt R, Save V, Dunlop MG, Hall PA, Lane DP, Wyllie AH, Bubb VJ (1997) APC expression in normal human tissues. J Pathol 181(4):426–433CrossRef
5.
go back to reference Miyashiro I, Senda T, Matsumine A, Baeg GH, Kuroda T, Shimano T, Miura S, Noda T, Kobayashi S, Monden M et al (1995) Subcellular localization of the APC protein: immunoelectron microscopic study of the association of the APC protein with catenin. Oncogene 11(1):89–96PubMed Miyashiro I, Senda T, Matsumine A, Baeg GH, Kuroda T, Shimano T, Miura S, Noda T, Kobayashi S, Monden M et al (1995) Subcellular localization of the APC protein: immunoelectron microscopic study of the association of the APC protein with catenin. Oncogene 11(1):89–96PubMed
6.
go back to reference Moser AR, Shoemaker AR, Connelly CS, Clipson L, Gould KA, Luongo C, Dove WF, Siggers PH, Gardner RL (1995) Homozygosity for the Min allele of Apc results in disruption of mouse development prior to gastrulation. Dev Dyn 203(4):422–433CrossRef Moser AR, Shoemaker AR, Connelly CS, Clipson L, Gould KA, Luongo C, Dove WF, Siggers PH, Gardner RL (1995) Homozygosity for the Min allele of Apc results in disruption of mouse development prior to gastrulation. Dev Dyn 203(4):422–433CrossRef
7.
go back to reference Shibata H, Toyama K, Shioya H, Ito M, Hirota M, Hasegawa S, Matsumoto H, Takano H, Akiyama T, Toyoshima K, Kanamaru R, Kanegae Y, Saito I, Nakamura Y, Shiba K, Noda T (1997) Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278(5335):120–123CrossRef Shibata H, Toyama K, Shioya H, Ito M, Hirota M, Hasegawa S, Matsumoto H, Takano H, Akiyama T, Toyoshima K, Kanamaru R, Kanegae Y, Saito I, Nakamura Y, Shiba K, Noda T (1997) Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278(5335):120–123CrossRef
8.
go back to reference Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M (1995) Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci USA 92(10):4482–4486CrossRef Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M (1995) Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci USA 92(10):4482–4486CrossRef
9.
go back to reference Pollard P, Deheragoda M, Segditsas S, Lewis A, Rowan A, Howarth K, Willis L, Nye E, McCart A, Mandir N, Silver A, Goodlad R, Stamp G, Cockman M, East P, Spencer-Dene B, Poulsom R, Wright N, Tomlinson I (2009) The Apc 1322T mouse develops severe polyposis associated with submaximal nuclear beta-catenin expression. Gastroenterology 136(7):2204–2213 e2201–2213CrossRef Pollard P, Deheragoda M, Segditsas S, Lewis A, Rowan A, Howarth K, Willis L, Nye E, McCart A, Mandir N, Silver A, Goodlad R, Stamp G, Cockman M, East P, Spencer-Dene B, Poulsom R, Wright N, Tomlinson I (2009) The Apc 1322T mouse develops severe polyposis associated with submaximal nuclear beta-catenin expression. Gastroenterology 136(7):2204–2213 e2201–2213CrossRef
10.
go back to reference Smits R, Kielman MF, Breukel C, Zurcher C, Neufeld K, Jagmohan-Changur S, Hofland N, van Dijk J, White R, Edelmann W, Kucherlapati R, Khan PM, Fodde R (1999) Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev 13(10):1309–1321CrossRef Smits R, Kielman MF, Breukel C, Zurcher C, Neufeld K, Jagmohan-Changur S, Hofland N, van Dijk J, White R, Edelmann W, Kucherlapati R, Khan PM, Fodde R (1999) Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev 13(10):1309–1321CrossRef
11.
go back to reference Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, van Es JH, Breukel C, Wiegant J, Giles RH, Clevers H (2001) Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 3(4):433–438CrossRef Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, van Es JH, Breukel C, Wiegant J, Giles RH, Clevers H (2001) Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 3(4):433–438CrossRef
12.
go back to reference Yokoyama A, Nomura R, Kurosumi M, Shimomura A, Onouchi T, Iizuka-Kogo A, Smits R, Fodde R, Itoh M, Senda T (2012) Some fine-structural findings on the thyroid gland in Apc1638T/1638T mice that express a C-terminus lacking truncated Apc. Med Mol Morphol 45(3):161–167CrossRef Yokoyama A, Nomura R, Kurosumi M, Shimomura A, Onouchi T, Iizuka-Kogo A, Smits R, Fodde R, Itoh M, Senda T (2012) Some fine-structural findings on the thyroid gland in Apc1638T/1638T mice that express a C-terminus lacking truncated Apc. Med Mol Morphol 45(3):161–167CrossRef
13.
go back to reference Onouchi T, Kobayashi K, Sakai K, Shimomura A, Smits R, Sumi-Ichinose C, Kurosumi M, Takao K, Nomura R, Iizuka-Kogo A, Suzuki H, Kondo K, Akiyama T, Miyakawa T, Fodde R, Senda T (2014) Targeted deletion of the C-terminus of the mouse adenomatous polyposis coli tumor suppressor results in neurologic phenotypes related to schizophrenia. Mol Brain 7:21CrossRef Onouchi T, Kobayashi K, Sakai K, Shimomura A, Smits R, Sumi-Ichinose C, Kurosumi M, Takao K, Nomura R, Iizuka-Kogo A, Suzuki H, Kondo K, Akiyama T, Miyakawa T, Fodde R, Senda T (2014) Targeted deletion of the C-terminus of the mouse adenomatous polyposis coli tumor suppressor results in neurologic phenotypes related to schizophrenia. Mol Brain 7:21CrossRef
14.
go back to reference Wang T, Onouchi T, Yamada NO, Matsuda S, Senda T (2017) A disturbance of intestinal epithelial cell population and kinetics in APC1638T mice. Med Mol Morphol 50(2):94–102CrossRef Wang T, Onouchi T, Yamada NO, Matsuda S, Senda T (2017) A disturbance of intestinal epithelial cell population and kinetics in APC1638T mice. Med Mol Morphol 50(2):94–102CrossRef
15.
go back to reference Davies ML, Roberts GT, Stuart N, Wakeman JA (2007) Analysis of a panel of antibodies to APC reveals consistent activity towards an unidentified protein. Br J Cancer 97(3):384–390CrossRef Davies ML, Roberts GT, Stuart N, Wakeman JA (2007) Analysis of a panel of antibodies to APC reveals consistent activity towards an unidentified protein. Br J Cancer 97(3):384–390CrossRef
16.
go back to reference Roberts GT, Davies ML, Wakeman JA (2003) Interaction between Ku80 protein and a widely used antibody to adenomatous polyposis coli. Br J Cancer 88(2):202–205CrossRef Roberts GT, Davies ML, Wakeman JA (2003) Interaction between Ku80 protein and a widely used antibody to adenomatous polyposis coli. Br J Cancer 88(2):202–205CrossRef
17.
go back to reference Wang Y, Azuma Y, Friedman DB, Coffey RJ, Neufeld KL (2009) Novel association of APC with intermediate filaments identified using a new versatile APC antibody. BMC Cell Biol 10:75CrossRef Wang Y, Azuma Y, Friedman DB, Coffey RJ, Neufeld KL (2009) Novel association of APC with intermediate filaments identified using a new versatile APC antibody. BMC Cell Biol 10:75CrossRef
18.
go back to reference Kawasaki Y, Tsuji S, Sagara M, Echizen K, Shibata Y, Akiyama T (2009) Adenomatous polyposis coli and Asef function downstream of hepatocyte growth factor and phosphatidylinositol 3-kinase. J Biol Chem 284(33):22436–22443CrossRef Kawasaki Y, Tsuji S, Sagara M, Echizen K, Shibata Y, Akiyama T (2009) Adenomatous polyposis coli and Asef function downstream of hepatocyte growth factor and phosphatidylinositol 3-kinase. J Biol Chem 284(33):22436–22443CrossRef
19.
go back to reference Nathke IS, Adams CL, Polakis P, Sellin JH, Nelson WJ (1996) The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol 134(1):165–179CrossRef Nathke IS, Adams CL, Polakis P, Sellin JH, Nelson WJ (1996) The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol 134(1):165–179CrossRef
20.
go back to reference Efstathiou JA, Noda M, Rowan A, Dixon C, Chinery R, Jawhari A, Hattori T, Wright NA, Bodmer WF, Pignatelli M (1998) Intestinal trefoil factor controls the expression of the adenomatous polyposis coli-catenin and the E-cadherin-catenin complexes in human colon carcinoma cells. Proc Natl Acad Sci USA 95(6):3122–3127CrossRef Efstathiou JA, Noda M, Rowan A, Dixon C, Chinery R, Jawhari A, Hattori T, Wright NA, Bodmer WF, Pignatelli M (1998) Intestinal trefoil factor controls the expression of the adenomatous polyposis coli-catenin and the E-cadherin-catenin complexes in human colon carcinoma cells. Proc Natl Acad Sci USA 95(6):3122–3127CrossRef
21.
go back to reference Yamada N, Kuranaga Y, Kumazaki M, Shinohara H, Taniguchi K, Akao Y (2016) Colorectal cancer cell-derived extracellular vesicles induce phenotypic alteration of T cells into tumor-growth supporting cells with transforming growth factor-beta1-mediated suppression. Oncotarget 7(19):27033–27043CrossRef Yamada N, Kuranaga Y, Kumazaki M, Shinohara H, Taniguchi K, Akao Y (2016) Colorectal cancer cell-derived extracellular vesicles induce phenotypic alteration of T cells into tumor-growth supporting cells with transforming growth factor-beta1-mediated suppression. Oncotarget 7(19):27033–27043CrossRef
22.
go back to reference Zhang L, Ren X, Alt E, Bai X, Huang S, Xu Z, Lynch PM, Moyer MP, Wen XF, Wu X (2010) Chemoprevention of colorectal cancer by targeting APC-deficient cells for apoptosis. Nature 464(7291):1058–1061CrossRef Zhang L, Ren X, Alt E, Bai X, Huang S, Xu Z, Lynch PM, Moyer MP, Wen XF, Wu X (2010) Chemoprevention of colorectal cancer by targeting APC-deficient cells for apoptosis. Nature 464(7291):1058–1061CrossRef
23.
go back to reference Baeg GH, Matsumine A, Kuroda T, Bhattacharjee RN, Miyashiro I, Toyoshima K, Akiyama T (1995) The tumour suppressor gene product APC blocks cell cycle progression from G0/G1 to S phase. EMBO J 14(22):5618–5625CrossRef Baeg GH, Matsumine A, Kuroda T, Bhattacharjee RN, Miyashiro I, Toyoshima K, Akiyama T (1995) The tumour suppressor gene product APC blocks cell cycle progression from G0/G1 to S phase. EMBO J 14(22):5618–5625CrossRef
24.
go back to reference Neufeld KL, White RL (1997) Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein. Proc Natl Acad Sci USA 94(7):3034–3039CrossRef Neufeld KL, White RL (1997) Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein. Proc Natl Acad Sci USA 94(7):3034–3039CrossRef
26.
go back to reference Fagman H, Larsson F, Arvidsson Y, Meuller J, Nordling M, Martinsson T, Helmbrecht K, Brabant G, Nilsson M (2003) Nuclear accumulation of full-length and truncated adenomatous polyposis coli protein in tumor cells depends on proliferation. Oncogene 22(38):6013–6022CrossRef Fagman H, Larsson F, Arvidsson Y, Meuller J, Nordling M, Martinsson T, Helmbrecht K, Brabant G, Nilsson M (2003) Nuclear accumulation of full-length and truncated adenomatous polyposis coli protein in tumor cells depends on proliferation. Oncogene 22(38):6013–6022CrossRef
27.
go back to reference Davies ML, Roberts GT, Spiller DG, Wakeman JA (2004) Density-dependent location and interactions of truncated APC and beta-catenin. Oncogene 23(7):1412–1419CrossRef Davies ML, Roberts GT, Spiller DG, Wakeman JA (2004) Density-dependent location and interactions of truncated APC and beta-catenin. Oncogene 23(7):1412–1419CrossRef
28.
go back to reference Brocardo M, Nathke IS, Henderson BR (2005) Redefining the subcellular location and transport of APC: new insights using a panel of antibodies. EMBO Rep 6(2):184–190CrossRef Brocardo M, Nathke IS, Henderson BR (2005) Redefining the subcellular location and transport of APC: new insights using a panel of antibodies. EMBO Rep 6(2):184–190CrossRef
Metadata
Title
Validation and application of a novel APC antibody in western blotting, immunoprecipitation, and immunohistochemistry
Authors
Nami O. Yamada
Wenduerma
Shuji Matsuda
Takao Senda
Publication date
01-12-2018
Publisher
Springer Japan
Published in
Medical Molecular Morphology / Issue 4/2018
Print ISSN: 1860-1480
Electronic ISSN: 1860-1499
DOI
https://doi.org/10.1007/s00795-018-0196-9

Other articles of this Issue 4/2018

Medical Molecular Morphology 4/2018 Go to the issue