Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2019

Open Access 01-12-2019 | Vagotomy | Research

Peripheral and central compensatory mechanisms for impaired vagus nerve function during peripheral immune activation

Authors: Anna Kobrzycka, Paweł Napora, Brandon L. Pearson, Krystyna Pierzchała-Koziec, Rafał Szewczyk, Marek Wieczorek

Published in: Journal of Neuroinflammation | Issue 1/2019

Login to get access

Abstract

Background

Determining the etiology and possible treatment strategies for numerous diseases requires a comprehensive understanding of compensatory mechanisms in physiological systems. The vagus nerve acts as a key interface between the brain and the peripheral internal organs. We set out to identify mechanisms compensating for a lack of neuronal communication between the immune and the central nervous system (CNS) during infection.

Methods

We assessed biochemical and central neurotransmitter changes resulting from subdiaphragmatic vagotomy and whether they are modulated by intraperitoneal infection. We performed a series of subdiaphragmatic vagotomy or sham operations on male Wistar rats. Next, after full, 30-day recovery period, they were randomly assigned to receive an injection of Escherichia coli lipopolysaccharide or saline. Two hours later, animal were euthanized and we measured the plasma concentration of prostaglandin E2 (with HPLC-MS), interleukin-6 (ELISA), and corticosterone (RIA). We also had measured the concentration of monoaminergic neurotransmitters and their metabolites in the amygdala, brainstem, hippocampus, hypothalamus, motor cortex, periaqueductal gray, and prefrontal medial cortex using RP-HPLC-ED. A subset of the animals was evaluated in the elevated plus maze test immediately before euthanization.

Results

The lack of immunosensory signaling of the vagus nerve stimulated increased activity of discrete inflammatory marker signals, which we confirmed by quantifying biochemical changes in blood plasma. Behavioral results, although preliminary, support the observed biochemical alterations. Many of the neurotransmitter changes observed after vagotomy indicated that the vagus nerve influences the activity of many brain areas involved in control of immune response and sickness behavior. Our studies show that these changes are largely eliminated during experimental infection.

Conclusions

Our results suggest that in vagotomized animals with blocked CNS, communication may transmit via a pathway independent of the vagus nerve to permit restoration of CNS activity for peripheral inflammation control.
Literature
1.
go back to reference Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. 2000;85(Suppl 1):1–17.PubMedCrossRef Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. 2000;85(Suppl 1):1–17.PubMedCrossRef
2.
go back to reference Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiome-brain-gut axis communication. In: Lyte M, Cryan JF, editors. Microbial endocrinology: the microbiota-gut-brain axis in health and disease. New York: Springer; 2014. p. 115–33. Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiome-brain-gut axis communication. In: Lyte M, Cryan JF, editors. Microbial endocrinology: the microbiota-gut-brain axis in health and disease. New York: Springer; 2014. p. 115–33.
3.
go back to reference Dantzer R. Cytokine, sickness behavior, and depression. Immunol Allergy Clin N Am. 2009;29(Suppl 2):247–64.CrossRef Dantzer R. Cytokine, sickness behavior, and depression. Immunol Allergy Clin N Am. 2009;29(Suppl 2):247–64.CrossRef
4.
go back to reference D’Mello C, Swain MG. Immune-to-brain communication pathways in inflammation-associated sickness and depression. In: Dantzer R, Capuron L, editors. Inflammation-associated depression: evidence, mechanisms and implications. current topics in behavioral neurosciences. Cham: Springer; 2016. p. 76–88. D’Mello C, Swain MG. Immune-to-brain communication pathways in inflammation-associated sickness and depression. In: Dantzer R, Capuron L, editors. Inflammation-associated depression: evidence, mechanisms and implications. current topics in behavioral neurosciences. Cham: Springer; 2016. p. 76–88.
5.
go back to reference Ek M, Kurosawa M, Lundeberg T, Ericsson A. Activation of vagal afferents after intravenous injection of interleukin-1β: role of endogenous prostaglandins. J Neurosci. 1998;18(Suppl 22):9471–9.PubMedCrossRefPubMedCentral Ek M, Kurosawa M, Lundeberg T, Ericsson A. Activation of vagal afferents after intravenous injection of interleukin-1β: role of endogenous prostaglandins. J Neurosci. 1998;18(Suppl 22):9471–9.PubMedCrossRefPubMedCentral
6.
go back to reference Goehler LE, Gaykema RP, Hansen MK, Anderson K, Maier SF, Watkins LR. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton Neurosci. 2000;85(Suppl 1):49–59.PubMedCrossRef Goehler LE, Gaykema RP, Hansen MK, Anderson K, Maier SF, Watkins LR. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton Neurosci. 2000;85(Suppl 1):49–59.PubMedCrossRef
7.
go back to reference Quan N, Banks WA. Brain-immune communication pathways. Brain Behav Immun. 2007;21(Suppl 6):727–35.PubMedCrossRef Quan N, Banks WA. Brain-immune communication pathways. Brain Behav Immun. 2007;21(Suppl 6):727–35.PubMedCrossRef
8.
go back to reference Watkins LR, Maier SF. Immune regulation of central nervous system functions: from sickness responses to pathological pain. J Intern Med. 2005;257(Suppl 2):139–55.PubMedCrossRef Watkins LR, Maier SF. Immune regulation of central nervous system functions: from sickness responses to pathological pain. J Intern Med. 2005;257(Suppl 2):139–55.PubMedCrossRef
9.
go back to reference Ghia JE, Blennerhassett P, Collins SM. Vagus nerve integrity and experimental colitis. Am J Physiol Gastrointest Liver Physiol. 2007;293(Suppl 3):560–7.CrossRef Ghia JE, Blennerhassett P, Collins SM. Vagus nerve integrity and experimental colitis. Am J Physiol Gastrointest Liver Physiol. 2007;293(Suppl 3):560–7.CrossRef
10.
go back to reference McCusker RH, Kelley KW. Immune–neural connections: how the immune system’s response to infectious agents influences behavior. J Exp Biol. 2013;216(Suppl 1):84–98.PubMedPubMedCentralCrossRef McCusker RH, Kelley KW. Immune–neural connections: how the immune system’s response to infectious agents influences behavior. J Exp Biol. 2013;216(Suppl 1):84–98.PubMedPubMedCentralCrossRef
11.
go back to reference Dantzer R. Cytokine-induced sickness behavior: where do we stand? Brain Behav Immun. 2001;15(Suppl 1):7–24.PubMedCrossRef Dantzer R. Cytokine-induced sickness behavior: where do we stand? Brain Behav Immun. 2001;15(Suppl 1):7–24.PubMedCrossRef
12.
go back to reference Roth J, Harré EM, Rummel C, Gerstberger R, Hubschle T. Signaling the brain in systemic inflammation: role of sensory circumventricular organs. Front Biosci. 2004;9(7):290–300.PubMedCrossRef Roth J, Harré EM, Rummel C, Gerstberger R, Hubschle T. Signaling the brain in systemic inflammation: role of sensory circumventricular organs. Front Biosci. 2004;9(7):290–300.PubMedCrossRef
13.
go back to reference Molina-Holgado E, Ortiz S, Molina-Holgado F, Guaza C. Induction of COX-2 and PGE2 biosynthesis by IL-1β is mediated by PKC and mitogen-activated protein kinases in murine astrocytes. Br J Pharmacol. 2000;131(Suppl 1):152–9.PubMedPubMedCentralCrossRef Molina-Holgado E, Ortiz S, Molina-Holgado F, Guaza C. Induction of COX-2 and PGE2 biosynthesis by IL-1β is mediated by PKC and mitogen-activated protein kinases in murine astrocytes. Br J Pharmacol. 2000;131(Suppl 1):152–9.PubMedPubMedCentralCrossRef
14.
go back to reference Bernheim HA. Is prostaglandin E2 involved in the pathogenesis of fever? Effects of interleukin-1 on the release of prostaglandins. Yale J Biol Med. 1986;59(Suppl 2):151–8.PubMedPubMedCentral Bernheim HA. Is prostaglandin E2 involved in the pathogenesis of fever? Effects of interleukin-1 on the release of prostaglandins. Yale J Biol Med. 1986;59(Suppl 2):151–8.PubMedPubMedCentral
15.
go back to reference Rees CJ, Henderson AH, Belafsky PC. Postviral vagal neuropathy. Ann Otol Rhinol Laryngol. 2009;118(Suppl 4):247–52.PubMedCrossRef Rees CJ, Henderson AH, Belafsky PC. Postviral vagal neuropathy. Ann Otol Rhinol Laryngol. 2009;118(Suppl 4):247–52.PubMedCrossRef
16.
go back to reference Klein TA, Ridley MB. An old flame reignites: vagal neuropathy secondary to neurosyphilis. J Voice. 2014;28(Suppl 2):255–7.PubMedCrossRef Klein TA, Ridley MB. An old flame reignites: vagal neuropathy secondary to neurosyphilis. J Voice. 2014;28(Suppl 2):255–7.PubMedCrossRef
17.
go back to reference Villalta J, Estruch R, Antúnez E, Valls J, Urbano-Márquez A. Vagal neuropathy in chronic alcoholics: relation to ethanol consumption. Alcohol Alcohol. 1989;24(Suppl 5):421–8.PubMed Villalta J, Estruch R, Antúnez E, Valls J, Urbano-Márquez A. Vagal neuropathy in chronic alcoholics: relation to ethanol consumption. Alcohol Alcohol. 1989;24(Suppl 5):421–8.PubMed
20.
go back to reference Burdan F, Chałas A, Szumiło J. Cyklooksygenaza i prostanoidy—znaczenie biologiczne. Postęp Higieny i Medycyny Doświadczalnej. 2006;60:129–41. Burdan F, Chałas A, Szumiło J. Cyklooksygenaza i prostanoidy—znaczenie biologiczne. Postęp Higieny i Medycyny Doświadczalnej. 2006;60:129–41.
21.
22.
go back to reference Hart BL. Biological basis of the behavior of sick animals. Neurosci Biobehav Rev. 1988;12(Suppl 2):123–37.PubMedCrossRef Hart BL. Biological basis of the behavior of sick animals. Neurosci Biobehav Rev. 1988;12(Suppl 2):123–37.PubMedCrossRef
23.
go back to reference Tizard I. Sickness behavior, its mechanisms and significance. Anim Health Res Rev. 2008;9(Suppl 1):87–99.PubMedCrossRef Tizard I. Sickness behavior, its mechanisms and significance. Anim Health Res Rev. 2008;9(Suppl 1):87–99.PubMedCrossRef
24.
go back to reference Ziemssen T, Kern S. Psychoneuroimmunology–cross-talk between the immune and nervous systems. J Neurol. 2007;254(Suppl 2):8–11. Ziemssen T, Kern S. Psychoneuroimmunology–cross-talk between the immune and nervous systems. J Neurol. 2007;254(Suppl 2):8–11.
26.
go back to reference Fleshner M, Goehler LE, Hermann J, Relton JK, Maier SF, Watkins LR. Interleukin-1β induced corticosterone elevation and hypothalamic NE depletion is vagally mediated. Brain Res Bull. 1995;37(Suppl 6):605–10.PubMedCrossRef Fleshner M, Goehler LE, Hermann J, Relton JK, Maier SF, Watkins LR. Interleukin-1β induced corticosterone elevation and hypothalamic NE depletion is vagally mediated. Brain Res Bull. 1995;37(Suppl 6):605–10.PubMedCrossRef
27.
go back to reference Hopkins SJ. Central nervous system recognition of peripheral inflammation: a neural, hormonal collaboration. Acta BioMed. 2007;78(Suppl 1):231–47.PubMed Hopkins SJ. Central nervous system recognition of peripheral inflammation: a neural, hormonal collaboration. Acta BioMed. 2007;78(Suppl 1):231–47.PubMed
28.
go back to reference Wieczorek M, Dunn AJ. Effect of subdiaphragmatic vagotomy on the noradrenergic and HPA axis activation induced by intraperitoneal interleukin-1 administration in rats. Brain Res. 2006;1101(Suppl 1):73–84.PubMedPubMedCentralCrossRef Wieczorek M, Dunn AJ. Effect of subdiaphragmatic vagotomy on the noradrenergic and HPA axis activation induced by intraperitoneal interleukin-1 administration in rats. Brain Res. 2006;1101(Suppl 1):73–84.PubMedPubMedCentralCrossRef
29.
go back to reference Wieczorek M, Świergiel AH, Pournajafi-Nazarloo H, Dunn AJ. Physiological and behavioral responses to interleukin-1β and LPS in vagotomized mice. Physiol Behav. 2005;85:500–11.PubMedPubMedCentralCrossRef Wieczorek M, Świergiel AH, Pournajafi-Nazarloo H, Dunn AJ. Physiological and behavioral responses to interleukin-1β and LPS in vagotomized mice. Physiol Behav. 2005;85:500–11.PubMedPubMedCentralCrossRef
30.
go back to reference Bluthé RM, Walter V, Parnet P, Layé S, Lestage J, Verrier D, et al. Lipopolysaccharide induces sickness behaviour in rats by a vagal mediated mechanism. C R Acad Sci III. 1994;317(Suppl 6):499–503.PubMed Bluthé RM, Walter V, Parnet P, Layé S, Lestage J, Verrier D, et al. Lipopolysaccharide induces sickness behaviour in rats by a vagal mediated mechanism. C R Acad Sci III. 1994;317(Suppl 6):499–503.PubMed
31.
go back to reference Bretdibat JL, Bluthe RM, Kent S, Kelley KW, Dantzer R. Lipopolysaccharide and interleukin-1 depress food-motivated behavior in mice by a vagal-mediated mechanism. Brain Behav Immun. 1995;9(Suppl 3):242–6.CrossRef Bretdibat JL, Bluthe RM, Kent S, Kelley KW, Dantzer R. Lipopolysaccharide and interleukin-1 depress food-motivated behavior in mice by a vagal-mediated mechanism. Brain Behav Immun. 1995;9(Suppl 3):242–6.CrossRef
32.
go back to reference Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 2007;21(Suppl 2):153–60.PubMedCrossRef Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 2007;21(Suppl 2):153–60.PubMedCrossRef
33.
go back to reference Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(Suppl 1):46–56.PubMedPubMedCentralCrossRef Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(Suppl 1):46–56.PubMedPubMedCentralCrossRef
34.
go back to reference Kent S, Bret-Dibat JL, Kelley KW, Dantzer R. Mechanisms of sickness-induced decreases in food-motivated behavior. Neurosci Biobehav Rev. 1996;20(Suppl 1):171–5.PubMedCrossRef Kent S, Bret-Dibat JL, Kelley KW, Dantzer R. Mechanisms of sickness-induced decreases in food-motivated behavior. Neurosci Biobehav Rev. 1996;20(Suppl 1):171–5.PubMedCrossRef
35.
go back to reference Konsman JP, Luheshi GN, Bluthé RM, Dantzer R. The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; a functional anatomical analysis. Eur J Neurosci. 2000;12:4434–46.PubMedCrossRef Konsman JP, Luheshi GN, Bluthé RM, Dantzer R. The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; a functional anatomical analysis. Eur J Neurosci. 2000;12:4434–46.PubMedCrossRef
36.
go back to reference Porges SW, Doussard-Roosevelt JA, Maiti AK. Vagal tone and the physiological regulation of emotion. Monogr Soc Res Child Dev. 1994;59(Suppl 2–3):167–86.PubMedCrossRef Porges SW, Doussard-Roosevelt JA, Maiti AK. Vagal tone and the physiological regulation of emotion. Monogr Soc Res Child Dev. 1994;59(Suppl 2–3):167–86.PubMedCrossRef
37.
go back to reference Porges SW. Cardiac vagal tone: a physiological index of stress. Neurosci Biobehav Rev. 1995;19(Suppl 2):225–33.PubMedCrossRef Porges SW. Cardiac vagal tone: a physiological index of stress. Neurosci Biobehav Rev. 1995;19(Suppl 2):225–33.PubMedCrossRef
38.
go back to reference Bonaz B, Sinniger V, Pellissier S. Vagal tone: effects on sensitivity, motility, and inflammation. Neurogastroenterol Motil. 2016;28(Suppl 4):455–62.PubMedCrossRef Bonaz B, Sinniger V, Pellissier S. Vagal tone: effects on sensitivity, motility, and inflammation. Neurogastroenterol Motil. 2016;28(Suppl 4):455–62.PubMedCrossRef
39.
go back to reference Pellissier S, Dantzer C, Mondillon L, Trocme C, Gauchez AS, Ducros V, et al. Relationship between vagal tone, cortisol, TNF-alpha, epinephrine and negative affects in Crohn’s disease and irritable bowel syndrome. PLoS One. 2014;9(Suppl 9):1–9. Pellissier S, Dantzer C, Mondillon L, Trocme C, Gauchez AS, Ducros V, et al. Relationship between vagal tone, cortisol, TNF-alpha, epinephrine and negative affects in Crohn’s disease and irritable bowel syndrome. PLoS One. 2014;9(Suppl 9):1–9.
40.
go back to reference Hosoi T, Okuma Y, Nomura Y. Electrical stimulation of afferent vagus nerve induces IL-1β expression in the brain and activates HPA axis. Am J Phys Regul Integr Comp Phys. 2000;279(Suppl 1):141–7. Hosoi T, Okuma Y, Nomura Y. Electrical stimulation of afferent vagus nerve induces IL-1β expression in the brain and activates HPA axis. Am J Phys Regul Integr Comp Phys. 2000;279(Suppl 1):141–7.
42.
go back to reference Karimi K, Bienenstock J, Wang LU, Forsythe P. The vagus nerve modulates CD4+ T cell activity. Brain Behav Immun. 2010;24(Suppl 2):316–23.PubMedCrossRef Karimi K, Bienenstock J, Wang LU, Forsythe P. The vagus nerve modulates CD4+ T cell activity. Brain Behav Immun. 2010;24(Suppl 2):316–23.PubMedCrossRef
43.
go back to reference Pereira MR, Leite PE. The involvement of parasympathetic and sympathetic nerve in the inflammatory reflex. J Cell Physiol. 2016;231(Suppl 9):1862–9.PubMedCrossRef Pereira MR, Leite PE. The involvement of parasympathetic and sympathetic nerve in the inflammatory reflex. J Cell Physiol. 2016;231(Suppl 9):1862–9.PubMedCrossRef
45.
go back to reference Shikora S, Toouli J, Herrera MF, Kulseng B, Zulewski H, Brancatisano R, et al. Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J Obes. 2013;2013:1–8.CrossRef Shikora S, Toouli J, Herrera MF, Kulseng B, Zulewski H, Brancatisano R, et al. Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J Obes. 2013;2013:1–8.CrossRef
46.
go back to reference Liu B, Fang F, Pedersen NL, Tillander A, Ludvigsson JF, Ekbom A, et al. Vagotomy and Parkinson disease. A Swedish register–based matched-cohort study. Neurology. 2017;88:1996–2002.PubMedPubMedCentralCrossRef Liu B, Fang F, Pedersen NL, Tillander A, Ludvigsson JF, Ekbom A, et al. Vagotomy and Parkinson disease. A Swedish register–based matched-cohort study. Neurology. 2017;88:1996–2002.PubMedPubMedCentralCrossRef
47.
go back to reference Boon P, Vonck K, van Rijckevorsel K, El Tahry R, Elger CE, Mullatti N, et al. A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure. 2015;32:52–61.PubMedCrossRef Boon P, Vonck K, van Rijckevorsel K, El Tahry R, Elger CE, Mullatti N, et al. A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure. 2015;32:52–61.PubMedCrossRef
48.
go back to reference Liu R, Song J, Li H, Wu Z, Chen H, Wu W, et al. Treatment of canine asthma by high selective vagotomy. J Thorac Cardiovasc Surg. 2014;148(Suppl 2):683–9.PubMedCrossRef Liu R, Song J, Li H, Wu Z, Chen H, Wu W, et al. Treatment of canine asthma by high selective vagotomy. J Thorac Cardiovasc Surg. 2014;148(Suppl 2):683–9.PubMedCrossRef
49.
go back to reference Bonaz B, Sinniger V, Pellissier S. The vagus nerve in the neuro-immune axis: implications in the pathology of the gastrointestinal tract. Front Immunol. 2017;8:1452.PubMedPubMedCentralCrossRef Bonaz B, Sinniger V, Pellissier S. The vagus nerve in the neuro-immune axis: implications in the pathology of the gastrointestinal tract. Front Immunol. 2017;8:1452.PubMedPubMedCentralCrossRef
50.
go back to reference Pellissier S, Dantzer C, Canini F, Mathieu N, Bonaz B. Psychological adjustment and autonomic disturbances in inflammatory bowel diseases and irritable bowel syndrome. Psychoneuroendocrinology. 2010;35(5):653–62.PubMedCrossRef Pellissier S, Dantzer C, Canini F, Mathieu N, Bonaz B. Psychological adjustment and autonomic disturbances in inflammatory bowel diseases and irritable bowel syndrome. Psychoneuroendocrinology. 2010;35(5):653–62.PubMedCrossRef
51.
go back to reference Chen Z, Chen H, Chen F, Gu D, Sun L, Zhang W, et al. Vagotomy decreases the neuronal activities of medulla oblongata and alleviates neurogenic inflammation of airways induced by repeated intra-esophageal instillation of HCl in Guinea pigs. Physiol Res. 2017;66(Suppl 6):1021–8.PubMed Chen Z, Chen H, Chen F, Gu D, Sun L, Zhang W, et al. Vagotomy decreases the neuronal activities of medulla oblongata and alleviates neurogenic inflammation of airways induced by repeated intra-esophageal instillation of HCl in Guinea pigs. Physiol Res. 2017;66(Suppl 6):1021–8.PubMed
52.
go back to reference Wu SC, Fang CW, Tzu-Liang Chen W, Muo CH. Acid-reducing vagotomy is associated with reduced risk of subsequent ischemic heart disease in complicated peptic ulcer. Medicine. 2016;95(Suppl 50):1–7. Wu SC, Fang CW, Tzu-Liang Chen W, Muo CH. Acid-reducing vagotomy is associated with reduced risk of subsequent ischemic heart disease in complicated peptic ulcer. Medicine. 2016;95(Suppl 50):1–7.
53.
go back to reference Powley TL, Fox EA, Berthoud HR. Retrograde tracer technique for assessment of selective and total subdiaphragmatic vagotomies. Am J Phys Regul Integr Comp Phys. 1987;253(Suppl 2):361–70. Powley TL, Fox EA, Berthoud HR. Retrograde tracer technique for assessment of selective and total subdiaphragmatic vagotomies. Am J Phys Regul Integr Comp Phys. 1987;253(Suppl 2):361–70.
55.
go back to reference Calleja-Castillo JM, De La Cruz-Aguilera DL, Manjarrez J, Velasco-Velázquez MA, Morales-Espinoza G, Moreno-Aguilar J, et al. Chronic deep brain stimulation of the hypothalamic nucleus in Wistar rats alters circulatory levels of corticosterone and proinflammatory cytokines. Clin Dev Immunol. 2013;2013:1–9.CrossRef Calleja-Castillo JM, De La Cruz-Aguilera DL, Manjarrez J, Velasco-Velázquez MA, Morales-Espinoza G, Moreno-Aguilar J, et al. Chronic deep brain stimulation of the hypothalamic nucleus in Wistar rats alters circulatory levels of corticosterone and proinflammatory cytokines. Clin Dev Immunol. 2013;2013:1–9.CrossRef
56.
go back to reference Hansen MK, Nguyen KT, Fleshner M, Goehler LE, Gaykema RP, Maier SF, et al. Effects of vagotomy on serum endotoxin, cytokines, and corticosterone after intraperitoneal lipopolysaccharide. Am J Phys Regul Integr Comp Phys. 2000;278(Suppl 2):331–6. Hansen MK, Nguyen KT, Fleshner M, Goehler LE, Gaykema RP, Maier SF, et al. Effects of vagotomy on serum endotoxin, cytokines, and corticosterone after intraperitoneal lipopolysaccharide. Am J Phys Regul Integr Comp Phys. 2000;278(Suppl 2):331–6.
57.
go back to reference Lenczowski MJ, Bluthé RM, Roth J, Rees GS, Rushforth DA, Van Dam AM, et al. Central administration of rat IL-6 induces HPA activation and fever but not sickness behavior in rats. Am J Phys Regul Integr Comp Phys. 1999;276(Suppl 3):652–8. Lenczowski MJ, Bluthé RM, Roth J, Rees GS, Rushforth DA, Van Dam AM, et al. Central administration of rat IL-6 induces HPA activation and fever but not sickness behavior in rats. Am J Phys Regul Integr Comp Phys. 1999;276(Suppl 3):652–8.
58.
go back to reference Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.PubMedCrossRef Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.PubMedCrossRef
59.
go back to reference Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(Suppl 10):1–16. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(Suppl 10):1–16.
60.
go back to reference Maeda K, Mehta H, Drevets DA, Coggeshall KM. IL-6 increases B-cell IgG production in a feed-forward proinflammatory mechanism to skew hematopoiesis and elevate myeloid production. Blood. 2010;115:4699–706.PubMedPubMedCentralCrossRef Maeda K, Mehta H, Drevets DA, Coggeshall KM. IL-6 increases B-cell IgG production in a feed-forward proinflammatory mechanism to skew hematopoiesis and elevate myeloid production. Blood. 2010;115:4699–706.PubMedPubMedCentralCrossRef
61.
go back to reference Matsumura K, Kaihatsu S, Imai H, Terao A, Shiraki T, Kobayashi S. Cyclooxygenase in the vagal afferents: is it involved in the brain prostaglandin response evoked by lipopolysaccharide? Auton Neurosci. 2000;85(Suppl 1):88–92.PubMedCrossRef Matsumura K, Kaihatsu S, Imai H, Terao A, Shiraki T, Kobayashi S. Cyclooxygenase in the vagal afferents: is it involved in the brain prostaglandin response evoked by lipopolysaccharide? Auton Neurosci. 2000;85(Suppl 1):88–92.PubMedCrossRef
63.
go back to reference Van Molle W, Libert C. How glucocorticoids control their own strength and the balance between pro-and anti-inflammatory mediators. Eur J Immunol. 2005;35(Suppl 12):3396–9.PubMedCrossRef Van Molle W, Libert C. How glucocorticoids control their own strength and the balance between pro-and anti-inflammatory mediators. Eur J Immunol. 2005;35(Suppl 12):3396–9.PubMedCrossRef
64.
go back to reference Rocca B, FitzGerald GA. Cyclooxygenases and prostaglandins: shaping up the immune response. Int Immunopharmacol. 2002;2(Suppl 5):603–30.PubMedCrossRef Rocca B, FitzGerald GA. Cyclooxygenases and prostaglandins: shaping up the immune response. Int Immunopharmacol. 2002;2(Suppl 5):603–30.PubMedCrossRef
65.
go back to reference Li H, Edin ML, Gruzdev A, Cheng J, Bradbury JA, Graves JP, et al. Regulation of T helper cell subsets by cyclooxygenases and their metabolites. Prostaglandins Other Lipid Mediators. 2013;104:74–83.PubMedCrossRef Li H, Edin ML, Gruzdev A, Cheng J, Bradbury JA, Graves JP, et al. Regulation of T helper cell subsets by cyclooxygenases and their metabolites. Prostaglandins Other Lipid Mediators. 2013;104:74–83.PubMedCrossRef
66.
go back to reference Demeure CE, Yang LP, Desjardins C, Raynauld P, Delespesse G. Prostaglandin E2 primes naive T cells for the production of anti-inflammatory cytokines. Eur J Immunol. 1997;27(Suppl 12):3526–31.PubMedCrossRef Demeure CE, Yang LP, Desjardins C, Raynauld P, Delespesse G. Prostaglandin E2 primes naive T cells for the production of anti-inflammatory cytokines. Eur J Immunol. 1997;27(Suppl 12):3526–31.PubMedCrossRef
67.
go back to reference Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 2011;332(Suppl 6035):1284–8.PubMedPubMedCentralCrossRef Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 2011;332(Suppl 6035):1284–8.PubMedPubMedCentralCrossRef
68.
go back to reference Medeiros A, Peres-Buzalaf C, Verdan FF, Serezani CH. Prostaglandin E2 and the suppression of phagocyte innate immune responses in different organs. Mediat Inflamm. 2012;2012:1–13.CrossRef Medeiros A, Peres-Buzalaf C, Verdan FF, Serezani CH. Prostaglandin E2 and the suppression of phagocyte innate immune responses in different organs. Mediat Inflamm. 2012;2012:1–13.CrossRef
69.
go back to reference Kis B, Isse T, Snipes JA, Chen L, Yamashita H, Ueta Y, et al. Effects of LPS stimulation on the expression of prostaglandin carriers in the cells of the blood-brain and blood-cerebrospinal fluid barriers. J Appl Physiol. 2006;100(Suppl 4):1392–9.PubMedCrossRef Kis B, Isse T, Snipes JA, Chen L, Yamashita H, Ueta Y, et al. Effects of LPS stimulation on the expression of prostaglandin carriers in the cells of the blood-brain and blood-cerebrospinal fluid barriers. J Appl Physiol. 2006;100(Suppl 4):1392–9.PubMedCrossRef
70.
go back to reference Blatteis CM. The afferent signalling of fever. J Physiol. 2000;526:470.PubMed Blatteis CM. The afferent signalling of fever. J Physiol. 2000;526:470.PubMed
71.
go back to reference Pacheco-López G, Bermúdez-Rattoni F. Brain–immune interactions and the neural basis of disease-avoidant ingestive behaviour. Philos Trans R Soc London B Biol Sci. 2011;366(Suppl 1583):3389–405.PubMedCrossRefPubMedCentral Pacheco-López G, Bermúdez-Rattoni F. Brain–immune interactions and the neural basis of disease-avoidant ingestive behaviour. Philos Trans R Soc London B Biol Sci. 2011;366(Suppl 1583):3389–405.PubMedCrossRefPubMedCentral
72.
go back to reference Van Bockstaele EJ, Bajic D, Proudfit H, Valentino RJ. Topographic architecture of stress-related pathways targeting the noradrenergic locus coeruleus. Physiol Behav. 2001;73(Suppl 3):273–83.PubMedCrossRef Van Bockstaele EJ, Bajic D, Proudfit H, Valentino RJ. Topographic architecture of stress-related pathways targeting the noradrenergic locus coeruleus. Physiol Behav. 2001;73(Suppl 3):273–83.PubMedCrossRef
73.
go back to reference Lv BC, Ji GL, Huo FQ, Chen T, Li H, Li YQ. Topographical distributions of endomorphinergic pathways from nucleus tractus solitarii to periaqueductal gray in the rat. J Chem Neuroanat. 2010;39(Suppl 3):166–74.PubMedCrossRef Lv BC, Ji GL, Huo FQ, Chen T, Li H, Li YQ. Topographical distributions of endomorphinergic pathways from nucleus tractus solitarii to periaqueductal gray in the rat. J Chem Neuroanat. 2010;39(Suppl 3):166–74.PubMedCrossRef
74.
go back to reference Richard JE, Anderberg RH, Göteson A, Gribble FM, Reimann F, Skibicka KP. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS One. 2015;10(Suppl 3):1–21. Richard JE, Anderberg RH, Göteson A, Gribble FM, Reimann F, Skibicka KP. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS One. 2015;10(Suppl 3):1–21.
75.
go back to reference Wang ZJ, Rao ZR, Shi JW. Tyrosine hydroxylase-, neurotensin-, or cholecystokinin-containing neurons in the nucleus tractus solitarii send projection fibers to the nucleus accumbens in the rat. Brain Res. 1992;578(Suppl 1–2):347–50.PubMedCrossRef Wang ZJ, Rao ZR, Shi JW. Tyrosine hydroxylase-, neurotensin-, or cholecystokinin-containing neurons in the nucleus tractus solitarii send projection fibers to the nucleus accumbens in the rat. Brain Res. 1992;578(Suppl 1–2):347–50.PubMedCrossRef
76.
go back to reference Matsumura K, Watanabe Y, Imai-Matsumura K, Connolly M, Koyama Y, Onoe H, et al. Mapping of prostaglandin E2 binding sites in rat brain using quantitative autoradiography. Brain Res. 1992;581(Suppl 2):292–8.PubMedCrossRef Matsumura K, Watanabe Y, Imai-Matsumura K, Connolly M, Koyama Y, Onoe H, et al. Mapping of prostaglandin E2 binding sites in rat brain using quantitative autoradiography. Brain Res. 1992;581(Suppl 2):292–8.PubMedCrossRef
77.
go back to reference Andreasson K. Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediators. 2010;91(Suppl 3–4):104–12.PubMedCrossRef Andreasson K. Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediators. 2010;91(Suppl 3–4):104–12.PubMedCrossRef
78.
go back to reference Zhang J, Rivest S. Distribution, regulation and colocalization of the genes encoding the EP2-and EP4-PGE2 receptors in the rat brain and neuronal responses to systemic inflammation. Eur J Neurosci. 1999;11(Suppl 8):2651–68.PubMedCrossRef Zhang J, Rivest S. Distribution, regulation and colocalization of the genes encoding the EP2-and EP4-PGE2 receptors in the rat brain and neuronal responses to systemic inflammation. Eur J Neurosci. 1999;11(Suppl 8):2651–68.PubMedCrossRef
79.
go back to reference Ek M, Arias C, Sawchenko P, Ericsson-Dahlstrand A. Distribution of the EP3 prostaglandin E2 receptor subtype in the rat brain: relationship to sites of interleukin-1–induced cellular responsiveness. J Comp Neurol. 2000;428(Suppl 1):5–20.PubMedCrossRef Ek M, Arias C, Sawchenko P, Ericsson-Dahlstrand A. Distribution of the EP3 prostaglandin E2 receptor subtype in the rat brain: relationship to sites of interleukin-1–induced cellular responsiveness. J Comp Neurol. 2000;428(Suppl 1):5–20.PubMedCrossRef
80.
go back to reference Surówka AD, Krygowska-Wajs A, Ziomber A, Thor P, Chrobak AA, Szczerbowska-Boruchowska M. Peripheral vagus nerve stimulation significantly affects lipid composition and protein secondary structure within dopamine-related brain regions in rats. NeuroMolecular Med. 2015;17(Suppl 2):178–91.PubMedPubMedCentralCrossRef Surówka AD, Krygowska-Wajs A, Ziomber A, Thor P, Chrobak AA, Szczerbowska-Boruchowska M. Peripheral vagus nerve stimulation significantly affects lipid composition and protein secondary structure within dopamine-related brain regions in rats. NeuroMolecular Med. 2015;17(Suppl 2):178–91.PubMedPubMedCentralCrossRef
81.
go back to reference Allchin RE, Batten TF, McWilliam PN, Vaughan PF. Electrical stimulation of the vagus increases extracellular glutamate recovered from the nucleus tractus solitarii of the cat by in vivo microdialysis. Exp Physiol. 1994;79(Suppl 2):265–8.PubMedCrossRef Allchin RE, Batten TF, McWilliam PN, Vaughan PF. Electrical stimulation of the vagus increases extracellular glutamate recovered from the nucleus tractus solitarii of the cat by in vivo microdialysis. Exp Physiol. 1994;79(Suppl 2):265–8.PubMedCrossRef
82.
go back to reference Ziomber A, Thor P, Krygowska-Wajs A, Załęcki T, Moskała M, Romańska I, et al. Chronic impairment of the vagus nerve function leads to inhibition of dopamine but not serotonin neurons in rat brain structures. Pharmacol Rep. 2012;64(Suppl 6):1359–67.PubMedCrossRef Ziomber A, Thor P, Krygowska-Wajs A, Załęcki T, Moskała M, Romańska I, et al. Chronic impairment of the vagus nerve function leads to inhibition of dopamine but not serotonin neurons in rat brain structures. Pharmacol Rep. 2012;64(Suppl 6):1359–67.PubMedCrossRef
83.
go back to reference Marty V, El Hachmane M, Amédée T. Dual modulation of synaptic transmission in the nucleus tractus solitarius by prostaglandin E2 synthesized downstream of IL-1β. Eur J Neurosci. 2008;27(Suppl 12):3132–50.PubMedCrossRef Marty V, El Hachmane M, Amédée T. Dual modulation of synaptic transmission in the nucleus tractus solitarius by prostaglandin E2 synthesized downstream of IL-1β. Eur J Neurosci. 2008;27(Suppl 12):3132–50.PubMedCrossRef
84.
go back to reference Sekiyama N, Mizuta S, Hori A, Kobayashi S. Prostaglandin E2 facilitates excitatory synaptic transmission in the nucleus tractus solitarii of rats. Neurosci Lett. 1995;188(Suppl 2):101–4.PubMedCrossRef Sekiyama N, Mizuta S, Hori A, Kobayashi S. Prostaglandin E2 facilitates excitatory synaptic transmission in the nucleus tractus solitarii of rats. Neurosci Lett. 1995;188(Suppl 2):101–4.PubMedCrossRef
85.
go back to reference Matsuoka Y, Furuyashiki T, Bito H, Ushikubi F, Tanaka Y, Kobayashi T, et al. Impaired adrenocorticotropic hormone response to bacterial endotoxin in mice deficient in prostaglandin E receptor EP1 and EP3 subtypes. Proc Natl Acad Sci. 2003;100(Suppl 7):4132–7.PubMedCrossRefPubMedCentral Matsuoka Y, Furuyashiki T, Bito H, Ushikubi F, Tanaka Y, Kobayashi T, et al. Impaired adrenocorticotropic hormone response to bacterial endotoxin in mice deficient in prostaglandin E receptor EP1 and EP3 subtypes. Proc Natl Acad Sci. 2003;100(Suppl 7):4132–7.PubMedCrossRefPubMedCentral
86.
go back to reference Ferri CC, Ferguson AV. Prostaglandin E2 mediates cellular effects of interleukin-1β on parvocellular neurons in the paraventricular nucleus of the hypothalamus. J Neuroendocrinol. 2005;17(Suppl 8):498–508.PubMedCrossRef Ferri CC, Ferguson AV. Prostaglandin E2 mediates cellular effects of interleukin-1β on parvocellular neurons in the paraventricular nucleus of the hypothalamus. J Neuroendocrinol. 2005;17(Suppl 8):498–508.PubMedCrossRef
88.
89.
go back to reference Soto-Tinoco E, Guerrero-Vargas NN, Buijs RM. Interaction between the hypothalamus and the immune system. Exp Physiol. 2016;101(Suppl 12):1463–71.PubMedCrossRef Soto-Tinoco E, Guerrero-Vargas NN, Buijs RM. Interaction between the hypothalamus and the immune system. Exp Physiol. 2016;101(Suppl 12):1463–71.PubMedCrossRef
90.
go back to reference Clarke IJ. Hypothalamus as an endocrine organ. Compr Physiol. 2015;5(Suppl 1):217–53.PubMed Clarke IJ. Hypothalamus as an endocrine organ. Compr Physiol. 2015;5(Suppl 1):217–53.PubMed
91.
go back to reference Rodrigo AH, Di Domenico SI, Ayaz H, Gulrajani S, Lam J, Ruocco AC. Differentiating functions of the lateral and medial prefrontal cortex in motor response inhibition. Neuroimage. 2014;85:423–31.CrossRef Rodrigo AH, Di Domenico SI, Ayaz H, Gulrajani S, Lam J, Ruocco AC. Differentiating functions of the lateral and medial prefrontal cortex in motor response inhibition. Neuroimage. 2014;85:423–31.CrossRef
92.
go back to reference Edwards JC. The effects of Trichinella spiralis infection on social interactions in mixed groups of infected and uninfected male mice. Anim Behav. 1988;36(Suppl 2):529–40.CrossRef Edwards JC. The effects of Trichinella spiralis infection on social interactions in mixed groups of infected and uninfected male mice. Anim Behav. 1988;36(Suppl 2):529–40.CrossRef
93.
go back to reference Loehle C. Social barriers to pathogen transmission in wild animal populations. Ecology. 1995;76(Suppl 2):326–35.CrossRef Loehle C. Social barriers to pathogen transmission in wild animal populations. Ecology. 1995;76(Suppl 2):326–35.CrossRef
94.
go back to reference Blatteis CM, Li S, Li Z, Feleder C, Perlik V. Cytokines, PGE2 and endotoxic fever: a re-assessment. Prostaglandins Other Lipid Mediators. 2005;76(Suppl 1–4):1–18.PubMedCrossRef Blatteis CM, Li S, Li Z, Feleder C, Perlik V. Cytokines, PGE2 and endotoxic fever: a re-assessment. Prostaglandins Other Lipid Mediators. 2005;76(Suppl 1–4):1–18.PubMedCrossRef
95.
go back to reference Pecchi E, Dallaporta M, Jean A, Thirion S, Troadec JD. Prostaglandins and sickness behavior: old story, new insights. Physiol Behav. 2009;97(Suppl 3–4):279–92.PubMedCrossRef Pecchi E, Dallaporta M, Jean A, Thirion S, Troadec JD. Prostaglandins and sickness behavior: old story, new insights. Physiol Behav. 2009;97(Suppl 3–4):279–92.PubMedCrossRef
96.
go back to reference Ushikubi F, Segi E, Sugimoto Y, Murata T, Matsuoka T, Kobayashi T. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP 3. Nature. 1998;395:281–4.PubMedCrossRef Ushikubi F, Segi E, Sugimoto Y, Murata T, Matsuoka T, Kobayashi T. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP 3. Nature. 1998;395:281–4.PubMedCrossRef
97.
go back to reference Cai PY, Bodhit A, Derequito R, Ansari S, Abukhalil F, Thenkabail S, et al. Vagus nerve stimulation in ischemic stroke: old wine in a new bottle. Front Neurol. 2014;5:1–8.CrossRef Cai PY, Bodhit A, Derequito R, Ansari S, Abukhalil F, Thenkabail S, et al. Vagus nerve stimulation in ischemic stroke: old wine in a new bottle. Front Neurol. 2014;5:1–8.CrossRef
98.
go back to reference Le Maître E, Revathikumar P, Idborg H, Raouf J, Korotkova M, Jakobsson PJ, et al. Impaired vagus-mediated immunosuppression in microsomal prostaglandin E synthase-1 deficient mice. Prostaglandins Other Lipid Mediators. 2015;121:155–62.PubMedCrossRef Le Maître E, Revathikumar P, Idborg H, Raouf J, Korotkova M, Jakobsson PJ, et al. Impaired vagus-mediated immunosuppression in microsomal prostaglandin E synthase-1 deficient mice. Prostaglandins Other Lipid Mediators. 2015;121:155–62.PubMedCrossRef
Metadata
Title
Peripheral and central compensatory mechanisms for impaired vagus nerve function during peripheral immune activation
Authors
Anna Kobrzycka
Paweł Napora
Brandon L. Pearson
Krystyna Pierzchała-Koziec
Rafał Szewczyk
Marek Wieczorek
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Vagotomy
Published in
Journal of Neuroinflammation / Issue 1/2019
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-019-1544-y

Other articles of this Issue 1/2019

Journal of Neuroinflammation 1/2019 Go to the issue