Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2014

Open Access 01-12-2014 | Research

Utilization of a novel digital measurement tool for quantitative assessment of upper extremity motor dexterity: a controlled pilot study

Authors: Ruth Getachew, Sunghoon I Lee, Jon A Kimball, Andrew Y Yew, Derek S Lu, Charles H Li, Jordan H Garst, Nima Ghalehsari, Brian H Paak, Mehrdad Razaghy, Marie Espinal, Arsha Ostowari, Amir A Ghavamrezaii, Sahar Pourtaheri, Irene Wu, Majid Sarrafzadeh, Daniel C Lu

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2014

Login to get access

Abstract

Background

The current methods of assessing motor function rely primarily on the clinician’s judgment of the patient’s physical examination and the patient’s self-administered surveys. Recently, computerized handgrip tools have been designed as an objective method to quantify upper-extremity motor function. This pilot study explores the use of the MediSens handgrip as a potential clinical tool for objectively assessing the motor function of the hand.

Methods

Eleven patients with cervical spondylotic myelopathy (CSM) were followed for three months. Eighteen age-matched healthy participants were followed for two months. The neuromotor function and the patient-perceived motor function of these patients were assessed with the MediSens device and the Oswestry Disability Index respectively. The MediSens device utilized a target tracking test to investigate the neuromotor capacity of the participants. The mean absolute error (MAE) between the target curve and the curve tracing achieved by the participants was used as the assessment metric. The patients’ adjusted MediSens MAE scores were then compared to the controls. The CSM patients were further classified as either “functional” or “nonfunctional” in order to validate the system’s responsiveness. Finally, the correlation between the MediSens MAE score and the ODI score was investigated.

Results

The control participants had lower MediSens MAE scores of 8.09%±1.60%, while the cervical spinal disorder patients had greater MediSens MAE scores of 11.24%±6.29%. Following surgery, the functional CSM patients had an average MediSens MAE score of 7.13%±1.60%, while the nonfunctional CSM patients had an average score of 12.41%±6.32%. The MediSens MAE and the ODI scores showed a statistically significant correlation (r=-0.341, p<1.14×10-5). A Bland-Altman plot was then used to validate the agreement between the two scores. Furthermore, the percentage improvement of the the two scores after receiving the surgical intervention showed a significant correlation (r=-0.723, p<0.04).

Conclusions

The MediSens handgrip device is capable of identifying patients with impaired motor function of the hand. The MediSens handgrip scores correlate with the ODI scores and may serve as an objective alternative for assessing motor function of the hand.
Literature
1.
go back to reference Fehlings MG, Jha N, Hewson S, Massicotte E, Kopjar B, Kalsi-Ryan S:Is surgery for cervical spondylotic myelopathy cost-effective? A cost-utility analysis based on data from the aospine north america prospective csm study. J Neurosurg Spine. 2012, 17 (1): 89-93.CrossRefPubMed Fehlings MG, Jha N, Hewson S, Massicotte E, Kopjar B, Kalsi-Ryan S:Is surgery for cervical spondylotic myelopathy cost-effective? A cost-utility analysis based on data from the aospine north america prospective csm study. J Neurosurg Spine. 2012, 17 (1): 89-93.CrossRefPubMed
2.
go back to reference Lim H, Lee D, McKay W, Priebe M, Holmes S, Sherwood A:Neurophysiological assessment of lower-limb voluntary control in incomplete spinal cord injury. Spinal Cord. 2005, 43 (5): 283-290.CrossRefPubMed Lim H, Lee D, McKay W, Priebe M, Holmes S, Sherwood A:Neurophysiological assessment of lower-limb voluntary control in incomplete spinal cord injury. Spinal Cord. 2005, 43 (5): 283-290.CrossRefPubMed
3.
4.
go back to reference Hochman M, Tuli S:Cervical spondylotic myelopathy: a review. Internet J Neurol. 2004, 4 (1): 24-42. Hochman M, Tuli S:Cervical spondylotic myelopathy: a review. Internet J Neurol. 2004, 4 (1): 24-42.
5.
go back to reference Young WF:Cervical spondylotic myelopathy: A common cause of spinal cord dysfunction in older persons. Am Fam Physician. 2000, 62: 1064-1070.PubMed Young WF:Cervical spondylotic myelopathy: A common cause of spinal cord dysfunction in older persons. Am Fam Physician. 2000, 62: 1064-1070.PubMed
6.
go back to reference King J, MS R:Validity and reliability of the short form-36 in cervical spondylotic myelopathy. J Neurosurg. 2002, 97: 180-185.PubMed King J, MS R:Validity and reliability of the short form-36 in cervical spondylotic myelopathy. J Neurosurg. 2002, 97: 180-185.PubMed
7.
go back to reference Singh A, Crockard H, Platts A, Stevens J:Clinical and radiological correlates of severity and surgery-related outcome in cervical spondylosis. J Neurosurg. 2001, 94: 189-198.PubMed Singh A, Crockard H, Platts A, Stevens J:Clinical and radiological correlates of severity and surgery-related outcome in cervical spondylosis. J Neurosurg. 2001, 94: 189-198.PubMed
8.
go back to reference Marino R, Barros T, Biering-Sorensen F, Burns S, Donovan W, Graves D, Haak M, Hudson L, Priebe M:International standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2003, 26: 50-56. Marino R, Barros T, Biering-Sorensen F, Burns S, Donovan W, Graves D, Haak M, Hudson L, Priebe M:International standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2003, 26: 50-56.
9.
go back to reference Denno J, Meadows G:Early diagnosis of cervical spondylotic myelopathy. a useful clinical sign. Spine. 1991, 16: 1353-1355.CrossRefPubMed Denno J, Meadows G:Early diagnosis of cervical spondylotic myelopathy. a useful clinical sign. Spine. 1991, 16: 1353-1355.CrossRefPubMed
10.
go back to reference Estanol B, Marin O:Mechanism of the inverted supinator reflex. A clinical and neurophysiological study. J Neurol Neurosurg Psychiatr. 1976, 39: 905-908.CrossRefPubMedPubMedCentral Estanol B, Marin O:Mechanism of the inverted supinator reflex. A clinical and neurophysiological study. J Neurol Neurosurg Psychiatr. 1976, 39: 905-908.CrossRefPubMedPubMedCentral
11.
go back to reference Amer M, Hubert G, Sullivan S, Herbison P, Franz E, Hammond-Tooke G:Reliability and diagnostic characteristics of clinical tests of upper limb motor function. J Clin Neurosci. 2012, 19: 1246-1251.CrossRefPubMed Amer M, Hubert G, Sullivan S, Herbison P, Franz E, Hammond-Tooke G:Reliability and diagnostic characteristics of clinical tests of upper limb motor function. J Clin Neurosci. 2012, 19: 1246-1251.CrossRefPubMed
12.
go back to reference Fukui M, Chiba K, Kawakami M, Kikuchi S, Konno S, Miyamoto M, Seichi A, Shimamura T, Shirado O, Taguchi T, Takahashi K, Takeshita K, Tani T, Toyama Y, Yonenobu K, Wada E, Tanaka T, Hirota Y:Japanese orthopaedic association back pain evaluation questionnaire. part 2. verification of its reliability: the subcommittee on low back pain and cervical myelopathy evaluation of the clinical outcome committee of the japanese orthopaedic association. J Orthop Sci. 2007, 12: 526-532.CrossRefPubMedPubMedCentral Fukui M, Chiba K, Kawakami M, Kikuchi S, Konno S, Miyamoto M, Seichi A, Shimamura T, Shirado O, Taguchi T, Takahashi K, Takeshita K, Tani T, Toyama Y, Yonenobu K, Wada E, Tanaka T, Hirota Y:Japanese orthopaedic association back pain evaluation questionnaire. part 2. verification of its reliability: the subcommittee on low back pain and cervical myelopathy evaluation of the clinical outcome committee of the japanese orthopaedic association. J Orthop Sci. 2007, 12: 526-532.CrossRefPubMedPubMedCentral
13.
14.
go back to reference Singh A, Gnanalingham K, Casey A, Crockard A:Use of quantitative assessment scales in cervical spondylotic myelopathy: survey of clinician’s attitudes. Acta Neurochir (Wien). 2005, 147: 1235-1238.CrossRef Singh A, Gnanalingham K, Casey A, Crockard A:Use of quantitative assessment scales in cervical spondylotic myelopathy: survey of clinician’s attitudes. Acta Neurochir (Wien). 2005, 147: 1235-1238.CrossRef
15.
go back to reference Finkelstein JA:Response shift following surgery of the lumbar spine. Thesis, University of Toronto;. 2010, Finkelstein JA:Response shift following surgery of the lumbar spine. Thesis, University of Toronto;. 2010,
16.
go back to reference Kurillo G, Zupan A, Bajd T:Force tracking system for the assessment of grip force control in patients with neuromuscular diseases. Clin Biomech. 2004, 19: 1014-1021.CrossRef Kurillo G, Zupan A, Bajd T:Force tracking system for the assessment of grip force control in patients with neuromuscular diseases. Clin Biomech. 2004, 19: 1014-1021.CrossRef
17.
go back to reference Boissy P, Bourbonnais D, Carlotti M, Gravel D, Arsenault B:Maximal grip force in chronic stroke subjects and its relationship to global upper extremity function. Clin Rehabil. 1999, 13: 354-362.CrossRefPubMed Boissy P, Bourbonnais D, Carlotti M, Gravel D, Arsenault B:Maximal grip force in chronic stroke subjects and its relationship to global upper extremity function. Clin Rehabil. 1999, 13: 354-362.CrossRefPubMed
18.
go back to reference Onla-Or S, Winstein C:Determining the optimal challenge point for motor skill learning in adults with moderately severe parkinson’s disease. Neurorehabil Neural Repair. 2008, 22: 385-395.CrossRefPubMed Onla-Or S, Winstein C:Determining the optimal challenge point for motor skill learning in adults with moderately severe parkinson’s disease. Neurorehabil Neural Repair. 2008, 22: 385-395.CrossRefPubMed
19.
go back to reference Ashoori A, McKeown M, Oishi M:Switched manual pursuit tracking tasks to measure motor performance in parkinson’s disease. Control Theory Appl (IET). 2011, 5: 1970-1977.CrossRef Ashoori A, McKeown M, Oishi M:Switched manual pursuit tracking tasks to measure motor performance in parkinson’s disease. Control Theory Appl (IET). 2011, 5: 1970-1977.CrossRef
20.
go back to reference Pradhan SD, Brewer BR, Carvell GE, Sparto PJ, Delitto A, Matsuoka Y:Assessment of fine motor control in individuals with parkinson’s disease using force tracking with a secondary cognitive task. J Neurol Phys Ther. 2010, 34: 32-40.CrossRefPubMed Pradhan SD, Brewer BR, Carvell GE, Sparto PJ, Delitto A, Matsuoka Y:Assessment of fine motor control in individuals with parkinson’s disease using force tracking with a secondary cognitive task. J Neurol Phys Ther. 2010, 34: 32-40.CrossRefPubMed
21.
go back to reference Halaney M, Carey J:Tracking ability of hemiparetic and healthy subjects. Phys Ther. 1989, 69: 342-348.PubMed Halaney M, Carey J:Tracking ability of hemiparetic and healthy subjects. Phys Ther. 1989, 69: 342-348.PubMed
22.
go back to reference Carey J, Baxter T, DiFabio R:Tracking control in the nonparetic hand of subjects with stroke. Arch Phys Med Rehabil. 1998, 79: 435-441.CrossRefPubMed Carey J, Baxter T, DiFabio R:Tracking control in the nonparetic hand of subjects with stroke. Arch Phys Med Rehabil. 1998, 79: 435-441.CrossRefPubMed
23.
go back to reference Lee SI, Ghasemzadeh H, Mortazavi BJ, Yew YA, Getachew R, Razaghy M, Ghalehsari N, Paak BH, Garst JH, Espinal M, Kimball J, Lu DC, Majid S:Objective assessment of overexcited hand movements using a lightweight sensory device. IEEE BSN. 2013, USA: MIT, Lee SI, Ghasemzadeh H, Mortazavi BJ, Yew YA, Getachew R, Razaghy M, Ghalehsari N, Paak BH, Garst JH, Espinal M, Kimball J, Lu DC, Majid S:Objective assessment of overexcited hand movements using a lightweight sensory device. IEEE BSN. 2013, USA: MIT,
24.
go back to reference Davidson M, Keating J:Oswestry disability questionnaire (ODQ). Aust J Physiother. 2005, 54: 270-CrossRef Davidson M, Keating J:Oswestry disability questionnaire (ODQ). Aust J Physiother. 2005, 54: 270-CrossRef
25.
go back to reference Mannion A, Junge A, Grob D, Dvorak J, Fairbank J:Development of a german version of the oswestry disability index. part 2: sensitivity to change after spinal surgery. Eur Spine. 2006, 15: 66-73.CrossRef Mannion A, Junge A, Grob D, Dvorak J, Fairbank J:Development of a german version of the oswestry disability index. part 2: sensitivity to change after spinal surgery. Eur Spine. 2006, 15: 66-73.CrossRef
26.
go back to reference Haas M, Nyiendo J:Diagnostic utility of the McGill pain questionnaire and the Oswestry disability questionnaire for classification of low back syndromes. J Manipulative Physiol Ther. 1992, 15: 90-98.PubMed Haas M, Nyiendo J:Diagnostic utility of the McGill pain questionnaire and the Oswestry disability questionnaire for classification of low back syndromes. J Manipulative Physiol Ther. 1992, 15: 90-98.PubMed
27.
go back to reference Grönblad M, Hupli M, Wennerstrand P, Järvinen E, Lukinmaa A, Kouri J, Karaharju E:Intercorrelation and test-retest reliability of the Pain Disability Index (PDI) and the Oswestry Disability Questionnaire (ODQ) and their correlation with pain intensity in low back pain patients. Clin J Pain. 1993, 9 (3): 189-195.CrossRefPubMed Grönblad M, Hupli M, Wennerstrand P, Järvinen E, Lukinmaa A, Kouri J, Karaharju E:Intercorrelation and test-retest reliability of the Pain Disability Index (PDI) and the Oswestry Disability Questionnaire (ODQ) and their correlation with pain intensity in low back pain patients. Clin J Pain. 1993, 9 (3): 189-195.CrossRefPubMed
28.
go back to reference Grevitt M, Khazim R, Webb J, Mulholland R, Shepperd J:The short form-36 health survey questionnaire in spine surgery. J Bone Joint Surg Br. 1997, 79 (1): 48-52.CrossRefPubMed Grevitt M, Khazim R, Webb J, Mulholland R, Shepperd J:The short form-36 health survey questionnaire in spine surgery. J Bone Joint Surg Br. 1997, 79 (1): 48-52.CrossRefPubMed
29.
go back to reference Schwartz C, Finkelstein J:Understanding inconsistencies in patient-reported outcomes after spine treatment: response shift phenomena. Spine J. 2009, 9 (12): 1039-1045.CrossRefPubMed Schwartz C, Finkelstein J:Understanding inconsistencies in patient-reported outcomes after spine treatment: response shift phenomena. Spine J. 2009, 9 (12): 1039-1045.CrossRefPubMed
30.
go back to reference Trachter R, Brouwer B, Faris M, McLean L:Performance on a manual tracking task differentiates individuals at risk of developing carpal tunnel syndrome from those not at risk. J Electromyogr Kinesiol. 2011, 21 (6): 998-1003.CrossRefPubMed Trachter R, Brouwer B, Faris M, McLean L:Performance on a manual tracking task differentiates individuals at risk of developing carpal tunnel syndrome from those not at risk. J Electromyogr Kinesiol. 2011, 21 (6): 998-1003.CrossRefPubMed
31.
go back to reference Boyd K, Gan B, Ross D, Richards R, Roth J, MacDermid J:Outcomes in carpal tunnel syndrome: symptom severity, conservative management and progression to surgery. Clin Invest Med. 2005, 28 (5): 254-260.PubMed Boyd K, Gan B, Ross D, Richards R, Roth J, MacDermid J:Outcomes in carpal tunnel syndrome: symptom severity, conservative management and progression to surgery. Clin Invest Med. 2005, 28 (5): 254-260.PubMed
32.
go back to reference Mannion A, Boneschi M, Teli M, Luca A, Zaina F, Negrini S, Schulz P:Reliability and validity of the cross-culturally adapted italian version of the core outcome measures index. Eur Spine J. 2012, 21: 737-749.CrossRefPubMedCentral Mannion A, Boneschi M, Teli M, Luca A, Zaina F, Negrini S, Schulz P:Reliability and validity of the cross-culturally adapted italian version of the core outcome measures index. Eur Spine J. 2012, 21: 737-749.CrossRefPubMedCentral
33.
go back to reference Damasceno L, Rocha P, Barbosa E, Barros C, Canto F, Defino H, Mannion A:Cross-cultural adaptation and assessment of the reliability and validity of the core outcome measures index (comi) for the brazilian-portuguese language. Eur Spine J. 2012, 21: 1273-1282.CrossRefPubMedPubMedCentral Damasceno L, Rocha P, Barbosa E, Barros C, Canto F, Defino H, Mannion A:Cross-cultural adaptation and assessment of the reliability and validity of the core outcome measures index (comi) for the brazilian-portuguese language. Eur Spine J. 2012, 21: 1273-1282.CrossRefPubMedPubMedCentral
Metadata
Title
Utilization of a novel digital measurement tool for quantitative assessment of upper extremity motor dexterity: a controlled pilot study
Authors
Ruth Getachew
Sunghoon I Lee
Jon A Kimball
Andrew Y Yew
Derek S Lu
Charles H Li
Jordan H Garst
Nima Ghalehsari
Brian H Paak
Mehrdad Razaghy
Marie Espinal
Arsha Ostowari
Amir A Ghavamrezaii
Sahar Pourtaheri
Irene Wu
Majid Sarrafzadeh
Daniel C Lu
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2014
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-11-121

Other articles of this Issue 1/2014

Journal of NeuroEngineering and Rehabilitation 1/2014 Go to the issue