Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2009

Open Access 01-12-2009 | Research article

Using data mining techniques to explore physicians' therapeutic decisions when clinical guidelines do not provide recommendations: methods and example for type 2 diabetes

Authors: Massoud Toussi, Jean-Baptiste Lamy, Philippe Le Toumelin, Alain Venot

Published in: BMC Medical Informatics and Decision Making | Issue 1/2009

Login to get access

Abstract

Background

Clinical guidelines carry medical evidence to the point of practice. As evidence is not always available, many guidelines do not provide recommendations for all clinical situations encountered in practice. We propose an approach for identifying knowledge gaps in guidelines and for exploring physicians' therapeutic decisions with data mining techniques to fill these knowledge gaps. We demonstrate our method by an example in the domain of type 2 diabetes.

Methods

We analyzed the French national guidelines for the management of type 2 diabetes to identify clinical conditions that are not covered or those for which the guidelines do not provide recommendations. We extracted patient records corresponding to each clinical condition from a database of type 2 diabetic patients treated at Avicenne University Hospital of Bobigny, France. We explored physicians' prescriptions for each of these profiles using C5.0 decision-tree learning algorithm. We developed decision-trees for different levels of detail of the therapeutic decision, namely the type of treatment, the pharmaco-therapeutic class, the international non proprietary name, and the dose of each medication. We compared the rules generated with those added to the guidelines in a newer version, to examine their similarity.

Results

We extracted 27 rules from the analysis of a database of 463 patient records. Eleven rules were about the choice of the type of treatment and thirteen rules about the choice of the pharmaco-therapeutic class of each drug. For the choice of the international non proprietary name and the dose, we could extract only a few rules because the number of patient records was too low for these factors. The extracted rules showed similarities with those added to the newer version of the guidelines.

Conclusion

Our method showed its usefulness for completing guidelines recommendations with rules learnt automatically from physicians' prescriptions. It could be used during the development of guidelines as a complementary source from practice-based knowledge. It can also be used as an evaluation tool for comparing a physician's therapeutic decisions with those recommended by a given set of clinical guidelines. The example we described showed that physician practice was in some ways ahead of the guideline.
Appendix
Available only for authorised users
Literature
2.
go back to reference Woolf SH, Grol R, Hutchinson A, Eccles M, Grimshaw J: Clinical guidelines: potential benefits, limitations, and harms of clinical guidelines. BMJ. 1999, 318: 527-30.CrossRefPubMedPubMedCentral Woolf SH, Grol R, Hutchinson A, Eccles M, Grimshaw J: Clinical guidelines: potential benefits, limitations, and harms of clinical guidelines. BMJ. 1999, 318: 527-30.CrossRefPubMedPubMedCentral
3.
go back to reference Type 2 diabetes treatment: French recommendations for good practice AFSSAPS – HAS.2006. Diabetes Metab. 2006, 32: 643-8. Type 2 diabetes treatment: French recommendations for good practice AFSSAPS – HAS.2006. Diabetes Metab. 2006, 32: 643-8.
4.
go back to reference Charbonnel B: [Strategy for patient management with type 2 diabetes excepting care of complications. Recommendations of ANAES–March 2000]. Diabetes Metab. 2000, 26: 232-43.PubMed Charbonnel B: [Strategy for patient management with type 2 diabetes excepting care of complications. Recommendations of ANAES–March 2000]. Diabetes Metab. 2000, 26: 232-43.PubMed
5.
6.
go back to reference Shiffman RN, Shekelle P, Overhage JM, Slutsky J, Grimshaw J, Deshpande AM: Standardized reporting of clinical practice guidelines: a proposal from the Conference on Guideline Standardization. Ann Intern Med. 2003, 139: 493-8.CrossRefPubMed Shiffman RN, Shekelle P, Overhage JM, Slutsky J, Grimshaw J, Deshpande AM: Standardized reporting of clinical practice guidelines: a proposal from the Conference on Guideline Standardization. Ann Intern Med. 2003, 139: 493-8.CrossRefPubMed
7.
go back to reference de Clercq PA, Blom JA, Korsten HHM, Hasman A: Approaches for creating computer-interpretable guidelines that facilitate decision support. Artif Intell Med. 2004, 31: 1-27. 10.1016/j.artmed.2004.02.003.CrossRefPubMed de Clercq PA, Blom JA, Korsten HHM, Hasman A: Approaches for creating computer-interpretable guidelines that facilitate decision support. Artif Intell Med. 2004, 31: 1-27. 10.1016/j.artmed.2004.02.003.CrossRefPubMed
8.
9.
go back to reference Mani S, Shankle WR, Dick MB, Pazzani MJ: Two-Stage Machine Learning model for guideline development. Artif Intell Med. 1999, 16: 51-71. 10.1016/S0933-3657(98)00064-5.CrossRefPubMed Mani S, Shankle WR, Dick MB, Pazzani MJ: Two-Stage Machine Learning model for guideline development. Artif Intell Med. 1999, 16: 51-71. 10.1016/S0933-3657(98)00064-5.CrossRefPubMed
10.
go back to reference Morik K, Imhoff M, Brockhausen P, Joachims T, Gather U, Imboff M: Knowledge discovery and knowledge validation in intensive care. Artif Intell Med. 2000, 19: 225-49. 10.1016/S0933-3657(00)00047-6.CrossRefPubMed Morik K, Imhoff M, Brockhausen P, Joachims T, Gather U, Imboff M: Knowledge discovery and knowledge validation in intensive care. Artif Intell Med. 2000, 19: 225-49. 10.1016/S0933-3657(00)00047-6.CrossRefPubMed
11.
go back to reference Mani S, Aliferis C, Krishnaswami S, Kotchen T: Learning causal and predictive clinical practice guidelines from data. Stud Health Technol Inform. 2007, 129: 850-4.PubMed Mani S, Aliferis C, Krishnaswami S, Kotchen T: Learning causal and predictive clinical practice guidelines from data. Stud Health Technol Inform. 2007, 129: 850-4.PubMed
12.
go back to reference Toussi M, Ebrahiminia V, Le Toumelin P, Cohen R, Venot A: An automated method for analyzing adherence to therapeutic guidelines: application in diabetes. Stud Health Technol Inform. 2008, 136: 339-44.PubMed Toussi M, Ebrahiminia V, Le Toumelin P, Cohen R, Venot A: An automated method for analyzing adherence to therapeutic guidelines: application in diabetes. Stud Health Technol Inform. 2008, 136: 339-44.PubMed
13.
go back to reference Shiffman RN, Karras BT, Agrawal A, Chen R, Marenco L, Nath S: GEM: a proposal for a more comprehensive guideline document model using XML. J Am Med Inform Assoc. 2000, 7: 488-98.CrossRefPubMedPubMedCentral Shiffman RN, Karras BT, Agrawal A, Chen R, Marenco L, Nath S: GEM: a proposal for a more comprehensive guideline document model using XML. J Am Med Inform Assoc. 2000, 7: 488-98.CrossRefPubMedPubMedCentral
16.
go back to reference Richards MM, Solanas A: Millon's Personality Model and ischemic cardiovascular acute episodes: Profiles of risk in a decision tree. International Journal of Clinical and Health Psychology. 2008, 8: 437-450. Richards MM, Solanas A: Millon's Personality Model and ischemic cardiovascular acute episodes: Profiles of risk in a decision tree. International Journal of Clinical and Health Psychology. 2008, 8: 437-450.
17.
go back to reference Lamy J, Ellini A, Ebrahiminia V, Zucker J, Falcoff H, Venot A: Use of the C4.5 machine learning algorithm to test a clinical guideline-based decision support system. Stud Health Technol Inform. 2008, 136: 223-8.PubMedPubMedCentral Lamy J, Ellini A, Ebrahiminia V, Zucker J, Falcoff H, Venot A: Use of the C4.5 machine learning algorithm to test a clinical guideline-based decision support system. Stud Health Technol Inform. 2008, 136: 223-8.PubMedPubMedCentral
18.
go back to reference Abston KC, Pryor TA, Haug PJ, Anderson JL: Inducing practice guidelines from a hospital database. Proc AMIA Annu Fall Symp. 1997, 168-72. Abston KC, Pryor TA, Haug PJ, Anderson JL: Inducing practice guidelines from a hospital database. Proc AMIA Annu Fall Symp. 1997, 168-72.
19.
go back to reference Bellazzi R, Zupan B: Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform. 2008, 77: 81-97. 10.1016/j.ijmedinf.2006.11.006.CrossRefPubMed Bellazzi R, Zupan B: Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform. 2008, 77: 81-97. 10.1016/j.ijmedinf.2006.11.006.CrossRefPubMed
20.
go back to reference Sboner A, Aliferis CF: Modeling clinical judgment and implicit guideline compliance in the diagnosis of melanomas using machine learning. AMIA Annu Symp Proc. 2005, 664-8. Sboner A, Aliferis CF: Modeling clinical judgment and implicit guideline compliance in the diagnosis of melanomas using machine learning. AMIA Annu Symp Proc. 2005, 664-8.
22.
go back to reference Mitchell TM, Mitchell T, Thomas M: Machine Learning. 1997, McGraw-Hill. Portland Mitchell TM, Mitchell T, Thomas M: Machine Learning. 1997, McGraw-Hill. Portland
23.
go back to reference Silagy CA, Weller DP, Lapsley H, Middleton P, Shelby-James T, Fazekas B: The effectiveness of local adaptation of nationally produced clinical practice guidelines. Fam Pract. 2002, 19: 223-30. 10.1093/fampra/19.3.223.CrossRefPubMed Silagy CA, Weller DP, Lapsley H, Middleton P, Shelby-James T, Fazekas B: The effectiveness of local adaptation of nationally produced clinical practice guidelines. Fam Pract. 2002, 19: 223-30. 10.1093/fampra/19.3.223.CrossRefPubMed
Metadata
Title
Using data mining techniques to explore physicians' therapeutic decisions when clinical guidelines do not provide recommendations: methods and example for type 2 diabetes
Authors
Massoud Toussi
Jean-Baptiste Lamy
Philippe Le Toumelin
Alain Venot
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2009
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/1472-6947-9-28

Other articles of this Issue 1/2009

BMC Medical Informatics and Decision Making 1/2009 Go to the issue