Skip to main content
Top
Published in: European Radiology 12/2018

01-12-2018 | Breast

Usefulness of feature analysis of breast-specific gamma imaging for predicting malignancy

Authors: Eun Kyoung Choi, Jooyeon Jamie Im, Chang Suk Park, Yong-An Chung, Kijun Kim, Jin Kyoung Oh

Published in: European Radiology | Issue 12/2018

Login to get access

Abstract

Objectives

The purpose of this study was to investigate which feature of the breast-specific gamma imaging (BSGI) uptake in women who were recently diagnosed with breast cancer was associated with malignancy.

Methods

Data on 231 newly diagnosed breast cancer patients who underwent preoperative BSGI were retrospectively reviewed. Feature analysis was done by classifying BSGI uptake into mass, non-mass, or focus/foci. Descriptors for mass, non-mass, or focus/foci were shape, distribution, number, and intensity. BSGI features of known malignancies and lesions that were additionally found by BSGI were correlated with mammographic breast density, histology, hormonal status, and clinical follow-up data obtained over at least 2 years.

Results

Among 372 breast lesions from 231 patients, 241 malignancies had been pathologically confirmed prior to BSGI and 131 additional lesions were found on BSGI. Irregular shape was more predictive of malignancy than oval shape (p=0.004) in mass uptake. Linear/ductal distribution was more predictive of malignancy than focal, regional, and segmental distribution (p<0.05) in non-mass uptake. Mammographic breast density was not associated with BSGI features. The lesion to normal ratio (LNR) was higher in the postmenopausal patients than that in the premenopausal patients (p=0.003).

Conclusions

The feature analysis of radiotracer uptake in BSGI is useful in predicting whether breast lesions are malignant or benign.

Key Points

• The feature analysis of BSGI uptake is useful in predicting malignancy.
• Irregular shape was predictive of malignancy in mass uptake.
• Linear/ductal distribution was predictive of malignancy in non-mass uptake.
Literature
1.
go back to reference Taillefer R (1999) The role of 99mTc-sestamibi and other conventional radiopharmaceuticals in breast cancer diagnosis. Semin Nucl Med 29:16–40CrossRef Taillefer R (1999) The role of 99mTc-sestamibi and other conventional radiopharmaceuticals in breast cancer diagnosis. Semin Nucl Med 29:16–40CrossRef
2.
go back to reference Villanueva-Meyer J, Leonard MH Jr, Briscoe E et al (1996) Mammoscintigraphy with technetium-99m-sestamibi in suspected breast cancer. J Nucl Med 37:926–930PubMed Villanueva-Meyer J, Leonard MH Jr, Briscoe E et al (1996) Mammoscintigraphy with technetium-99m-sestamibi in suspected breast cancer. J Nucl Med 37:926–930PubMed
3.
go back to reference Hruska CB (2017) Molecular Breast Imaging for Screening in Dense Breasts: State of the Art and Future Directions. AJR Am J Roentgenol 208:275–283CrossRef Hruska CB (2017) Molecular Breast Imaging for Screening in Dense Breasts: State of the Art and Future Directions. AJR Am J Roentgenol 208:275–283CrossRef
4.
go back to reference Rechtman LR, Lenihan MJ, Lieberman JH et al (2014) Breast-specific gamma imaging for the detection of breast cancer in dense versus nondense breasts. AJR Am J Roentgenol 202:293–298CrossRef Rechtman LR, Lenihan MJ, Lieberman JH et al (2014) Breast-specific gamma imaging for the detection of breast cancer in dense versus nondense breasts. AJR Am J Roentgenol 202:293–298CrossRef
5.
go back to reference Rhodes DJ, Hruska CB, Phillips SW, Whaley DH, O'Connor MK (2011) Dedicated dual-head gamma imaging for breast cancer screening in women with mammographically dense breasts. Radiology 258:106–118CrossRef Rhodes DJ, Hruska CB, Phillips SW, Whaley DH, O'Connor MK (2011) Dedicated dual-head gamma imaging for breast cancer screening in women with mammographically dense breasts. Radiology 258:106–118CrossRef
6.
go back to reference Hruska CB, Conners AL, Jones KN et al (2015) Diagnostic workup and costs of a single supplemental molecular breast imaging screen of mammographically dense breasts. AJR Am J Roentgenol 204:1345–1353CrossRef Hruska CB, Conners AL, Jones KN et al (2015) Diagnostic workup and costs of a single supplemental molecular breast imaging screen of mammographically dense breasts. AJR Am J Roentgenol 204:1345–1353CrossRef
7.
go back to reference Bassett L, Berg W, Feig S (2003) Breast Imaging Reporting and Data System, BI-RADS: Mammography. American College of Radiology, Reston Bassett L, Berg W, Feig S (2003) Breast Imaging Reporting and Data System, BI-RADS: Mammography. American College of Radiology, Reston
8.
go back to reference Mendelson E, Baum J, Berg W, Merritt C, Rubin E (2003) Breast imaging reporting and data system, BI-RADS: ultrasound. American College of Radiology, Reston Mendelson E, Baum J, Berg W, Merritt C, Rubin E (2003) Breast imaging reporting and data system, BI-RADS: ultrasound. American College of Radiology, Reston
9.
go back to reference Ikeda D, Hylton N, Kuhl C (2003) BI-RADS: magnetic resonance imaging. American College of Radiology Reston, VA, 1–114 Ikeda D, Hylton N, Kuhl C (2003) BI-RADS: magnetic resonance imaging. American College of Radiology Reston, VA, 1–114
10.
go back to reference Narayanan D, Madsen KS, Kalinyak JE, Berg WA (2011) Interpretation of positron emission mammography: feature analysis and rates of malignancy. AJR Am J Roentgenol 196:956–970CrossRef Narayanan D, Madsen KS, Kalinyak JE, Berg WA (2011) Interpretation of positron emission mammography: feature analysis and rates of malignancy. AJR Am J Roentgenol 196:956–970CrossRef
11.
go back to reference Conners AL, Hruska CB, Tortorelli CL et al (2012) Lexicon for standardized interpretation of gamma camera molecular breast imaging: observer agreement and diagnostic accuracy. Eur J Nucl Med Mol Imaging 39:971–982CrossRef Conners AL, Hruska CB, Tortorelli CL et al (2012) Lexicon for standardized interpretation of gamma camera molecular breast imaging: observer agreement and diagnostic accuracy. Eur J Nucl Med Mol Imaging 39:971–982CrossRef
12.
go back to reference Conners AL, Maxwell RW, Tortorelli CL et al (2012) Gamma camera breast imaging lexicon. AJR Am J Roentgenol 199:W767–W774CrossRef Conners AL, Maxwell RW, Tortorelli CL et al (2012) Gamma camera breast imaging lexicon. AJR Am J Roentgenol 199:W767–W774CrossRef
13.
go back to reference Meissnitzer T, Seymer A, Keinrath P et al (2015) Added value of semi-quantitative breast-specific gamma imaging in the work-up of suspicious breast lesions compared to mammography, ultrasound and 3-T MRI. Br J Radiol 88:20150147CrossRef Meissnitzer T, Seymer A, Keinrath P et al (2015) Added value of semi-quantitative breast-specific gamma imaging in the work-up of suspicious breast lesions compared to mammography, ultrasound and 3-T MRI. Br J Radiol 88:20150147CrossRef
14.
go back to reference Tan H, Jiang L, Gu Y et al (2014) Visual and semi-quantitative analyses of dual-phase breast-specific gamma imaging with Tc-99m-sestamibi in detecting primary breast cancer. Ann Nucl Med 28:17–24CrossRef Tan H, Jiang L, Gu Y et al (2014) Visual and semi-quantitative analyses of dual-phase breast-specific gamma imaging with Tc-99m-sestamibi in detecting primary breast cancer. Ann Nucl Med 28:17–24CrossRef
15.
go back to reference Yoon HJ, Kim Y, Chang KT, Kim BS (2015) Prognostic value of semi-quantitative tumor uptake on Tc-99m sestamibi breast-specific gamma imaging in invasive ductal breast cancer. Ann Nucl Med 29:553–560CrossRef Yoon HJ, Kim Y, Chang KT, Kim BS (2015) Prognostic value of semi-quantitative tumor uptake on Tc-99m sestamibi breast-specific gamma imaging in invasive ductal breast cancer. Ann Nucl Med 29:553–560CrossRef
16.
go back to reference Hong AS, Rosen EL, Soo MS, Baker JA (2005) BI-RADS for sonography: positive and negative predictive values of sonographic features. AJR Am J Roentgenol 184:1260–1265CrossRef Hong AS, Rosen EL, Soo MS, Baker JA (2005) BI-RADS for sonography: positive and negative predictive values of sonographic features. AJR Am J Roentgenol 184:1260–1265CrossRef
17.
go back to reference Rahbar G, Sie AC, Hansen GC et al (1999) Benign versus malignant solid breast masses: US differentiation. Radiology 213:889–894CrossRef Rahbar G, Sie AC, Hansen GC et al (1999) Benign versus malignant solid breast masses: US differentiation. Radiology 213:889–894CrossRef
18.
go back to reference Cole-Beuglet C, Soriano RZ, Kurtz AB, Goldberg BB (1983) Fibroadenoma of the breast: sonomammography correlated with pathology in 122 patients. AJR Am J Roentgenol 140:369–375CrossRef Cole-Beuglet C, Soriano RZ, Kurtz AB, Goldberg BB (1983) Fibroadenoma of the breast: sonomammography correlated with pathology in 122 patients. AJR Am J Roentgenol 140:369–375CrossRef
19.
go back to reference Liberman L, Abramson AF, Squires FB, Glassman J, Morris E, Dershaw D (1998) The breast imaging reporting and data system: positive predictive value of mammographic features and final assessment categories. AJR Am J Roentgenol 171:35–40CrossRef Liberman L, Abramson AF, Squires FB, Glassman J, Morris E, Dershaw D (1998) The breast imaging reporting and data system: positive predictive value of mammographic features and final assessment categories. AJR Am J Roentgenol 171:35–40CrossRef
20.
go back to reference Yabuuchi H, Matsuo Y, Kamitani T et al (2010) Non-mass-like enhancement on contrast-enhanced breast MR imaging: lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted MR images. Eur J Radiol 75:e126–e132CrossRef Yabuuchi H, Matsuo Y, Kamitani T et al (2010) Non-mass-like enhancement on contrast-enhanced breast MR imaging: lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted MR images. Eur J Radiol 75:e126–e132CrossRef
21.
go back to reference Morakkabati-Spitz N, Leutner C, Schild H, Traeber F, Kuhl C (2005) Diagnostic usefulness of segmental and linear enhancement in dynamic breast MRI. Eur Radiol 15:2010–2017CrossRef Morakkabati-Spitz N, Leutner C, Schild H, Traeber F, Kuhl C (2005) Diagnostic usefulness of segmental and linear enhancement in dynamic breast MRI. Eur Radiol 15:2010–2017CrossRef
22.
go back to reference Yoon HJ, Kim Y, Lee JE, Kim BS (2015) Background 99mTc-methoxyisobutylisonitrile uptake of breast-specific gamma imaging in relation to background parenchymal enhancement in magnetic resonance imaging. Eur Radiol 25:32–40CrossRef Yoon HJ, Kim Y, Lee JE, Kim BS (2015) Background 99mTc-methoxyisobutylisonitrile uptake of breast-specific gamma imaging in relation to background parenchymal enhancement in magnetic resonance imaging. Eur Radiol 25:32–40CrossRef
23.
go back to reference Delmon-Moingeon LI, Piwnica-Worms D, Van den Abbeele AD, Holman BL, Davison A, Jones AG (1990) Uptake of the cation hexakis(2-methoxyisobutylisonitrile)-technetium-99m by human carcinoma cell lines in vitro. Cancer Res 50:2198–2202PubMed Delmon-Moingeon LI, Piwnica-Worms D, Van den Abbeele AD, Holman BL, Davison A, Jones AG (1990) Uptake of the cation hexakis(2-methoxyisobutylisonitrile)-technetium-99m by human carcinoma cell lines in vitro. Cancer Res 50:2198–2202PubMed
24.
go back to reference Scopinaro F, Schillaci O, Scarpini M et al (1994) Technetium-99m sestamibi: an indicator of breast cancer invasiveness. Eur J Nucl Med 21:984–987CrossRef Scopinaro F, Schillaci O, Scarpini M et al (1994) Technetium-99m sestamibi: an indicator of breast cancer invasiveness. Eur J Nucl Med 21:984–987CrossRef
25.
go back to reference Freitas JE, Freitas AE (1994) Thyroid and parathyroid imaging. Semin Nucl Med 24:234–245CrossRef Freitas JE, Freitas AE (1994) Thyroid and parathyroid imaging. Semin Nucl Med 24:234–245CrossRef
26.
go back to reference Brem RF, Floerke AC, Rapelyea JA, Teal C, Kelly T, Mathur V (2008) Breast-specific gamma imaging as an adjunct imaging modality for the diagnosis of breast cancer. Radiology 247:651–657CrossRef Brem RF, Floerke AC, Rapelyea JA, Teal C, Kelly T, Mathur V (2008) Breast-specific gamma imaging as an adjunct imaging modality for the diagnosis of breast cancer. Radiology 247:651–657CrossRef
27.
go back to reference Huang YT, Cheung YC, Lo YF, Ueng SH, Kuo WL, Chen SC (2011) MRI findings of cancers preoperatively diagnosed as pure DCIS at core needle biopsy. Acta Radiol 52:1064–1068CrossRef Huang YT, Cheung YC, Lo YF, Ueng SH, Kuo WL, Chen SC (2011) MRI findings of cancers preoperatively diagnosed as pure DCIS at core needle biopsy. Acta Radiol 52:1064–1068CrossRef
28.
go back to reference Lee CW, Wu HK, Lai HW et al (2016) Preoperative clinicopathologic factors and breast magnetic resonance imaging features can predict ductal carcinoma in situ with invasive components. Eur J Radiol 85:780–789CrossRef Lee CW, Wu HK, Lai HW et al (2016) Preoperative clinicopathologic factors and breast magnetic resonance imaging features can predict ductal carcinoma in situ with invasive components. Eur J Radiol 85:780–789CrossRef
29.
go back to reference Berger KL, Nicholson SA, Dehdashti F, Siegel BA (2000) FDG PET evaluation of mucinous neoplasms: correlation of FDG uptake with histopathologic features. AJR Am J Roentgenol 174:1005–1008CrossRef Berger KL, Nicholson SA, Dehdashti F, Siegel BA (2000) FDG PET evaluation of mucinous neoplasms: correlation of FDG uptake with histopathologic features. AJR Am J Roentgenol 174:1005–1008CrossRef
30.
go back to reference Kumar R, Rani N, Patel C, Basu S, Alavi A (2009) False-Negative and False-Positive Results in FDG-PET and PET/CT in Breast Cancer. PET Clin 4:289–298CrossRef Kumar R, Rani N, Patel C, Basu S, Alavi A (2009) False-Negative and False-Positive Results in FDG-PET and PET/CT in Breast Cancer. PET Clin 4:289–298CrossRef
31.
go back to reference Miglioretti DL, Walker R, Weaver DL et al (2011) Accuracy of screening mammography varies by week of menstrual cycle. Radiology 258:372–379CrossRef Miglioretti DL, Walker R, Weaver DL et al (2011) Accuracy of screening mammography varies by week of menstrual cycle. Radiology 258:372–379CrossRef
32.
go back to reference Giess CS, Yeh ED, Raza S, Birdwell RL (2014) Background parenchymal enhancement at breast MR imaging: normal patterns, diagnostic challenges, and potential for false-positive and false-negative interpretation. Radiographics 34:234–247CrossRef Giess CS, Yeh ED, Raza S, Birdwell RL (2014) Background parenchymal enhancement at breast MR imaging: normal patterns, diagnostic challenges, and potential for false-positive and false-negative interpretation. Radiographics 34:234–247CrossRef
Metadata
Title
Usefulness of feature analysis of breast-specific gamma imaging for predicting malignancy
Authors
Eun Kyoung Choi
Jooyeon Jamie Im
Chang Suk Park
Yong-An Chung
Kijun Kim
Jin Kyoung Oh
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 12/2018
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5563-3

Other articles of this Issue 12/2018

European Radiology 12/2018 Go to the issue