Skip to main content
Top
Published in: BMC Public Health 1/2022

Open Access 01-12-2022 | Research

Use of biomass fuels predicts indoor particulate matter and carbon monoxide concentrations; evidence from an informal urban settlement in Fort Portal city, Uganda

Authors: Winnifred K. Kansiime, Richard K. Mugambe, Edwinah Atusingwize, Solomon T. Wafula, Vincent Nsereko, Tonny Ssekamatte, Aisha Nalugya, Eric Stephen Coker, John C. Ssempebwa, John Bosco Isunju

Published in: BMC Public Health | Issue 1/2022

Login to get access

Abstract

Background

Poor indoor air quality (IAQ) is a leading cause of respiratory and cardiopulmonary illnesses. Particulate matter (PM2.5) and carbon monoxide (CO) are critical indicators of IAQ, yet there is limited evidence of their concentrations in informal urban settlements in low-income countries.

Objective

This study assessed household characteristics that predict the concentrations of PM2.5 and CO within households in an informal settlement in Fort Portal City, Uganda.

Methodology

A cross-sectional study was conducted in 374 households. Concentrations of PM2.5 and CO were measured using a multi-purpose laser particle detector and a carbon monoxide IAQ meter, respectively. Data on household characteristics were collected using a structured questionnaire and an observational checklist. Data were analysed using STATA version 14.0. Linear regression was used to establish the relationship between PM2.5, CO concentrations and household cooking characteristics.

Results

The majority (89%, 332/374) of the households used charcoal for cooking. More than half (52%, 194/374) cooked outdoors. Cooking areas had significantly higher PM2.5 and CO concentrations (t = 18.14, p ≤ 0.05) and (t = 5.77 p ≤ 0.05), respectively. Cooking outdoors was associated with a 0.112 increase in the PM2.5 concentrations in the cooking area (0.112 [95% CI: -0.069, 1.614; p = 0.033]). Cooking with moderately polluting fuel was associated with a 0.718 increase in CO concentrations (0.718 [95% CI: 0.084, 1.352; p = 0.027]) in the living area.

Conclusions

The cooking and the living areas had high concentrations of PM2.5 and CO during the cooking time. Cooking with charcoal resulted in higher CO in the living area. Furthermore, cooking outdoors did not have a protective effect against PM2.5, and ambient PM2.5 exceeded the WHO Air quality limits. Interventions to improve the indoor air quality in informal settlements should promote a switch to cleaner cooking energy and improvement in the ambient air quality.
Appendix
Available only for authorised users
Literature
3.
go back to reference IHME IfHmae: Household air pollution from solid fuels — Level 4 risk. In. Seattle, WA; 2019. IHME IfHmae: Household air pollution from solid fuels — Level 4 risk. In. Seattle, WA; 2019.
4.
go back to reference Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The lancet. 2012;380(9859):2224–60.CrossRef Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The lancet. 2012;380(9859):2224–60.CrossRef
5.
go back to reference IHME IfHmae: DEATHS - CAUSE: ALL CAUSES - RISK: HOUSEHOLD AIR POLLUTION FROM SOLID FUELS - SEX: BOTH - AGE: AGE-STANDARDIZED (RATE). In.: Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Results. Seattle, United States: Institute for Health Metrics and Evaluation (IHME), 2021.; 2021. IHME IfHmae: DEATHS - CAUSE: ALL CAUSES - RISK: HOUSEHOLD AIR POLLUTION FROM SOLID FUELS - SEX: BOTH - AGE: AGE-STANDARDIZED (RATE). In.: Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Results. Seattle, United States: Institute for Health Metrics and Evaluation (IHME), 2021.; 2021.
6.
go back to reference Fisher S, Bellinger DC, Cropper ML, Kumar P, Binagwaho A, Koudenoukpo JB, Park Y, Taghian G, Landrigan PJ. Air pollution and development in Africa: impacts on health, the economy, and human capital. The Lancet Planetary Health. 2021;5(10):e681–8.CrossRef Fisher S, Bellinger DC, Cropper ML, Kumar P, Binagwaho A, Koudenoukpo JB, Park Y, Taghian G, Landrigan PJ. Air pollution and development in Africa: impacts on health, the economy, and human capital. The Lancet Planetary Health. 2021;5(10):e681–8.CrossRef
7.
go back to reference Faisal B, Kapella J, Vicent S. Household air pollution and household health in Uganda. Dev South Afr. 2021;38(3):437–53.CrossRef Faisal B, Kapella J, Vicent S. Household air pollution and household health in Uganda. Dev South Afr. 2021;38(3):437–53.CrossRef
8.
go back to reference Coker E, Katamba A, Kizito S, Eskenazi B, Davis JL. Household air pollution profiles associated with persistent childhood cough in urban Uganda. Environ Int. 2020;136: 105471.CrossRef Coker E, Katamba A, Kizito S, Eskenazi B, Davis JL. Household air pollution profiles associated with persistent childhood cough in urban Uganda. Environ Int. 2020;136: 105471.CrossRef
9.
go back to reference Chafe ZA, Brauer M, Klimont Z, Van Dingenen R, Mehta S, Rao S, Riahi K, Dentener F, Smith KR. Household cooking with solid fuels contributes to ambient PM2. 5 air pollution and the burden of disease. Environ Health Perspect. 2014;122(12):1314–20.CrossRef Chafe ZA, Brauer M, Klimont Z, Van Dingenen R, Mehta S, Rao S, Riahi K, Dentener F, Smith KR. Household cooking with solid fuels contributes to ambient PM2. 5 air pollution and the burden of disease. Environ Health Perspect. 2014;122(12):1314–20.CrossRef
10.
go back to reference IARC WGotEoCRtH: Household use of solid fuels and high-temperature frying. IARC monographs on the evaluation of carcinogenic risks to humans 2010, 95:1. IARC WGotEoCRtH: Household use of solid fuels and high-temperature frying. IARC monographs on the evaluation of carcinogenic risks to humans 2010, 95:1.
12.
go back to reference Stoner O, Lewis J, Martínez IL, Gumy S, Economou T, Adair-Rohani H. Household cooking fuel estimates at global and country level for 1990 to 2030. Nat Commun. 2021;12(1):1–8.CrossRef Stoner O, Lewis J, Martínez IL, Gumy S, Economou T, Adair-Rohani H. Household cooking fuel estimates at global and country level for 1990 to 2030. Nat Commun. 2021;12(1):1–8.CrossRef
14.
go back to reference Bamwesigye D, Kupec P, Chekuimo G, Pavlis J, Asamoah O, Darkwah SA, Hlaváčková P. Charcoal and Wood Biomass Utilization in Uganda: The Socioeconomic and Environmental Dynamics and Implications. Sustainability. 2020;12(20):8337.CrossRef Bamwesigye D, Kupec P, Chekuimo G, Pavlis J, Asamoah O, Darkwah SA, Hlaváčková P. Charcoal and Wood Biomass Utilization in Uganda: The Socioeconomic and Environmental Dynamics and Implications. Sustainability. 2020;12(20):8337.CrossRef
15.
go back to reference Levy RJ. Carbon monoxide pollution and neurodevelopment: A public health concern. Neurotoxicol Teratol. 2015;49:31–40.CrossRef Levy RJ. Carbon monoxide pollution and neurodevelopment: A public health concern. Neurotoxicol Teratol. 2015;49:31–40.CrossRef
16.
go back to reference WHO WHO: Burden of disease from household air pollution for 2012. In.; 2014. WHO WHO: Burden of disease from household air pollution for 2012. In.; 2014.
17.
go back to reference Lee M-S. Hang J-q, Zhang F-y, Dai H-l, Su L, Christiani DC: In-home solid fuel use and cardiovascular disease: a cross-sectional analysis of the Shanghai Putuo study. Environ Health. 2012;11(1):18.CrossRef Lee M-S. Hang J-q, Zhang F-y, Dai H-l, Su L, Christiani DC: In-home solid fuel use and cardiovascular disease: a cross-sectional analysis of the Shanghai Putuo study. Environ Health. 2012;11(1):18.CrossRef
19.
go back to reference Bereitschaft B, Debbage K. Urban form, air pollution, and CO2 emissions in large US metropolitan areas. Prof Geogr. 2013;65(4):612–35.CrossRef Bereitschaft B, Debbage K. Urban form, air pollution, and CO2 emissions in large US metropolitan areas. Prof Geogr. 2013;65(4):612–35.CrossRef
20.
go back to reference Corburn J, Sverdlik A. Slum Upgrading and Health Equity. Int J Environ Res Public Health. 2017;14(4):342.CrossRef Corburn J, Sverdlik A. Slum Upgrading and Health Equity. Int J Environ Res Public Health. 2017;14(4):342.CrossRef
21.
go back to reference Ssekamatte T, Isunju JB, Balugaba BE, Nakirya D, Osuret J, Mguni P, Mugambe R, van Vliet B. Opportunities and barriers to effective operation and maintenance of public toilets in informal settlements: perspectives from toilet operators in Kampala. Int J Environ Health Res. 2019;29(4):359–70.CrossRef Ssekamatte T, Isunju JB, Balugaba BE, Nakirya D, Osuret J, Mguni P, Mugambe R, van Vliet B. Opportunities and barriers to effective operation and maintenance of public toilets in informal settlements: perspectives from toilet operators in Kampala. Int J Environ Health Res. 2019;29(4):359–70.CrossRef
22.
go back to reference Mukama T, Ndejjo R, Musoke D, Musinguzi G, Halage AA, Carpenter DO, Ssempebwa JC. Practices, Concerns, and Willingness to Participate in Solid Waste Management in Two Urban Slums in Central Uganda. J Environ Public Health. 2016;2016:6830163.CrossRef Mukama T, Ndejjo R, Musoke D, Musinguzi G, Halage AA, Carpenter DO, Ssempebwa JC. Practices, Concerns, and Willingness to Participate in Solid Waste Management in Two Urban Slums in Central Uganda. J Environ Public Health. 2016;2016:6830163.CrossRef
23.
go back to reference Coker ES, Amegah AK, Mwebaze E, Ssematimba J, Bainomugisha E: A Land Use Regression Model using Machine Learning and Locally Developed Low Cost Particulate Matter Sensors in Uganda. Environ Res 2021:111352. Coker ES, Amegah AK, Mwebaze E, Ssematimba J, Bainomugisha E: A Land Use Regression Model using Machine Learning and Locally Developed Low Cost Particulate Matter Sensors in Uganda. Environ Res 2021:111352.
24.
go back to reference Abraham MJB, Ronald K, Aaron W, Rita A, Jonan K, Asuman G, Joseph M. Evaluating the Energy Requirements for Uganda: Case for Natural Gas. International Journal of Energy and Environmental Science. 2021;6(4):68.CrossRef Abraham MJB, Ronald K, Aaron W, Rita A, Jonan K, Asuman G, Joseph M. Evaluating the Energy Requirements for Uganda: Case for Natural Gas. International Journal of Energy and Environmental Science. 2021;6(4):68.CrossRef
25.
go back to reference Elahi R: Uganda-Uganda Grid Expansion and Reinforcement Project (GERP): P133305-Implementation Status Results Report: Sequence 02. In.: The World Bank; 2017. Elahi R: Uganda-Uganda Grid Expansion and Reinforcement Project (GERP): P133305-Implementation Status Results Report: Sequence 02. In.: The World Bank; 2017.
26.
go back to reference Singh A, Gatari MJ, Kidane AW, Alemu ZA, Derrick N, Webster MJ, Bartington SE, Thomas GN, Avis W, Pope FD. Air quality assessment in three East African cities using calibrated low-cost sensors with a focus on road-based hotspots. Environmental Research Communications. 2021;3(7): 075007.CrossRef Singh A, Gatari MJ, Kidane AW, Alemu ZA, Derrick N, Webster MJ, Bartington SE, Thomas GN, Avis W, Pope FD. Air quality assessment in three East African cities using calibrated low-cost sensors with a focus on road-based hotspots. Environmental Research Communications. 2021;3(7): 075007.CrossRef
27.
go back to reference Nakora N, Byamugisha D, Birungi G. Indoor air quality in rural Southwestern Uganda: particulate matter, heavy metals and carbon monoxide in kitchens using charcoal fuel in Mbarara Municipality. SN Applied Sciences. 2020;2(12):2037.CrossRef Nakora N, Byamugisha D, Birungi G. Indoor air quality in rural Southwestern Uganda: particulate matter, heavy metals and carbon monoxide in kitchens using charcoal fuel in Mbarara Municipality. SN Applied Sciences. 2020;2(12):2037.CrossRef
28.
go back to reference van Gemert F, Kirenga B, Chavannes N, Kamya M, Luzige S, Musinguzi P, Turyagaruka J, Jones R, Tsiligianni I, Williams S. Prevalence of chronic obstructive pulmonary disease and associated risk factors in Uganda (FRESH AIR Uganda): a prospective cross-sectional observational study. Lancet Glob Health. 2015;3(1):e44–51.CrossRef van Gemert F, Kirenga B, Chavannes N, Kamya M, Luzige S, Musinguzi P, Turyagaruka J, Jones R, Tsiligianni I, Williams S. Prevalence of chronic obstructive pulmonary disease and associated risk factors in Uganda (FRESH AIR Uganda): a prospective cross-sectional observational study. Lancet Glob Health. 2015;3(1):e44–51.CrossRef
29.
go back to reference Van Gemert F, Chavannes N, Nabadda N, Luzige S, Kirenga B, Eggermont C, de Jong C, van der Molen T. Impact of chronic respiratory symptoms in a rural area of sub-Saharan Africa: an in-depth qualitative study in the Masindi district of Uganda. Prim Care Respir J. 2013;22(3):300–5.CrossRef Van Gemert F, Chavannes N, Nabadda N, Luzige S, Kirenga B, Eggermont C, de Jong C, van der Molen T. Impact of chronic respiratory symptoms in a rural area of sub-Saharan Africa: an in-depth qualitative study in the Masindi district of Uganda. Prim Care Respir J. 2013;22(3):300–5.CrossRef
30.
go back to reference Programme UNHS: State of the world's cities 2010/2011: Bridging the urban divide: Earthscan; 2010. Programme UNHS: State of the world's cities 2010/2011: Bridging the urban divide: Earthscan; 2010.
31.
go back to reference Atugonza R. Effect of cooking conditions on lung health in Kisinga Subcounty, Kasese district. Uganda: Makerere University; 2018. Atugonza R. Effect of cooking conditions on lung health in Kisinga Subcounty, Kasese district. Uganda: Makerere University; 2018.
32.
go back to reference UBOS: National Population and Housing Census 2014 Area Specific Profiles Kabarole District April In.; 2014. UBOS: National Population and Housing Census 2014 Area Specific Profiles Kabarole District April In.; 2014.
33.
go back to reference Engling G, Lee JJ, Sie H-J, Wu Y-C. I Y-P: Anhydrosugar characteristics in biomass smoke aerosol—case study of environmental influence on particle-size of rice straw burning aerosol. J Aerosol Sci. 2013;56:2–14.CrossRef Engling G, Lee JJ, Sie H-J, Wu Y-C. I Y-P: Anhydrosugar characteristics in biomass smoke aerosol—case study of environmental influence on particle-size of rice straw burning aerosol. J Aerosol Sci. 2013;56:2–14.CrossRef
37.
go back to reference World Health Organization: Methods for monitoring indoor air quality in schools. In: Report of a meeting, Bonn, Germany: 2011; 2011: 4–5. World Health Organization: Methods for monitoring indoor air quality in schools. In: Report of a meeting, Bonn, Germany: 2011; 2011: 4–5.
38.
go back to reference WHO: Public Health Act 1935 (Cap. 281),. In. Geneva; 1969: 42. WHO: Public Health Act 1935 (Cap. 281),. In. Geneva; 1969: 42.
39.
go back to reference Lung MA, Espira A. A large-scale, village-level test of wood consumption patterns in a modified traditional cook stove in Kenya. Energy Sustain Dev. 2019;49:11–20.CrossRef Lung MA, Espira A. A large-scale, village-level test of wood consumption patterns in a modified traditional cook stove in Kenya. Energy Sustain Dev. 2019;49:11–20.CrossRef
41.
go back to reference Muindi K, Kimani-Murage E, Egondi T, Rocklov J, Ng N: Household Air Pollution: Sources and Exposure Levels to Fine Particulate Matter in Nairobi Slums. Toxics 2016, 4(3). Muindi K, Kimani-Murage E, Egondi T, Rocklov J, Ng N: Household Air Pollution: Sources and Exposure Levels to Fine Particulate Matter in Nairobi Slums. Toxics 2016, 4(3).
42.
go back to reference Salje H, Gurley ES, Homaira N, Ram PK, Haque R, Petri W, Moss WJ, Luby SP, Breysse P, Azziz-Baumgartner E. Impact of neighborhood biomass cooking patterns on episodic high indoor particulate matter concentrations in clean fuel homes in D haka. B angladesh Indoor air. 2014;24(2):213–20.CrossRef Salje H, Gurley ES, Homaira N, Ram PK, Haque R, Petri W, Moss WJ, Luby SP, Breysse P, Azziz-Baumgartner E. Impact of neighborhood biomass cooking patterns on episodic high indoor particulate matter concentrations in clean fuel homes in D haka. B angladesh Indoor air. 2014;24(2):213–20.CrossRef
43.
go back to reference Karekezi S, Kimani J, Onguru O. Energy access among the urban poor in Kenya. Energy Sustain Dev. 2008;12(4):38–48.CrossRef Karekezi S, Kimani J, Onguru O. Energy access among the urban poor in Kenya. Energy Sustain Dev. 2008;12(4):38–48.CrossRef
46.
go back to reference Okimiji OP, Techato K, Simon JN, Tope-Ajayi OO, Okafor AT, Aborisade MA, Phoungthong K. Spatial Pattern of Air Pollutant Concentrations and Their Relationship with Meteorological Parameters in Coastal Slum Settlements of Lagos, Southwestern Nigeria. Atmosphere. 2021;12(11):1426.CrossRef Okimiji OP, Techato K, Simon JN, Tope-Ajayi OO, Okafor AT, Aborisade MA, Phoungthong K. Spatial Pattern of Air Pollutant Concentrations and Their Relationship with Meteorological Parameters in Coastal Slum Settlements of Lagos, Southwestern Nigeria. Atmosphere. 2021;12(11):1426.CrossRef
47.
go back to reference Demirel G, Özden Ö, Döğeroğlu T, Gaga EO. Personal exposure of primary school children to BTEX, NO2 and ozone in Eskişehir, Turkey: Relationship with indoor/outdoor concentrations and risk assessment. Sci Total Environ. 2014;473:537–48.CrossRef Demirel G, Özden Ö, Döğeroğlu T, Gaga EO. Personal exposure of primary school children to BTEX, NO2 and ozone in Eskişehir, Turkey: Relationship with indoor/outdoor concentrations and risk assessment. Sci Total Environ. 2014;473:537–48.CrossRef
48.
go back to reference Obaidullah M, Dyakov I, Peeters L, Bram S, De Ruyck J: Investigation of Particulate Matter Pollutants in Parking Garages. In: Proceedings of the 1st International Conference on Sustainable Development, Sustainable Chemical Industry, Pollution, Hazards and Environment (SDSCIPHE'12): 2012; 2012: 105–110. Obaidullah M, Dyakov I, Peeters L, Bram S, De Ruyck J: Investigation of Particulate Matter Pollutants in Parking Garages. In: Proceedings of the 1st International Conference on Sustainable Development, Sustainable Chemical Industry, Pollution, Hazards and Environment (SDSCIPHE'12): 2012; 2012: 105–110.
49.
go back to reference Shrestha PM, Humphrey JL, Carlton EJ, Adgate JL, Barton KE, Root ED, Miller SL. Impact of outdoor air pollution on indoor air quality in low-income homes during wildfire seasons. Int J Environ Res Public Health. 2019;16(19):3535.CrossRef Shrestha PM, Humphrey JL, Carlton EJ, Adgate JL, Barton KE, Root ED, Miller SL. Impact of outdoor air pollution on indoor air quality in low-income homes during wildfire seasons. Int J Environ Res Public Health. 2019;16(19):3535.CrossRef
50.
go back to reference Yuan M, Song Y, Hong S, Huang Y. Evaluating the effects of compact growth on air quality in already-high-density cities with an integrated land use-transport-emission model: A case study of Xiamen. China Habitat International. 2017;69:37–47.CrossRef Yuan M, Song Y, Hong S, Huang Y. Evaluating the effects of compact growth on air quality in already-high-density cities with an integrated land use-transport-emission model: A case study of Xiamen. China Habitat International. 2017;69:37–47.CrossRef
51.
go back to reference Anthony W: Govt reduces power tariffs for three month. In: Monitor. 2021. Anthony W: Govt reduces power tariffs for three month. In: Monitor. 2021.
53.
go back to reference Keshishian C, Sandle H, Meltzer M, Young Y, Ward R, Balasegaram S. Carbon monoxide from neighbouring restaurants: the need for an integrated multi-agency response. J Public Health (Oxf). 2012;34(4):477–82.CrossRef Keshishian C, Sandle H, Meltzer M, Young Y, Ward R, Balasegaram S. Carbon monoxide from neighbouring restaurants: the need for an integrated multi-agency response. J Public Health (Oxf). 2012;34(4):477–82.CrossRef
54.
go back to reference Winder C. Carbon monoxide-induced death and toxicity from charcoal briquettes. Med J Aust. 2012;197:349–50.CrossRef Winder C. Carbon monoxide-induced death and toxicity from charcoal briquettes. Med J Aust. 2012;197:349–50.CrossRef
55.
go back to reference Woolley K, Bartington SE, Pope FD, Price MJ, Thomas GN, Kabera T. Biomass cooking carbon monoxide levels in commercial canteens in Kigali, Rwanda. Arch Environ Occup Health. 2021;76(2):75–85.CrossRef Woolley K, Bartington SE, Pope FD, Price MJ, Thomas GN, Kabera T. Biomass cooking carbon monoxide levels in commercial canteens in Kigali, Rwanda. Arch Environ Occup Health. 2021;76(2):75–85.CrossRef
56.
go back to reference Woolley KE, Bagambe T, Singh A, Avis WR, Kabera T, Weldetinsae A, Mariga ST, Kirenga B, Pope FD, Thomas GN, et al. Investigating the Association between Wood and Charcoal Domestic Cooking, Respiratory Symptoms and Acute Respiratory Infections among Children Aged Under 5 Years in Uganda: A Cross-Sectional Analysis of the 2016 Demographic and Health Survey. Int J Environ Res Public Health. 2020;17(11):3974.CrossRef Woolley KE, Bagambe T, Singh A, Avis WR, Kabera T, Weldetinsae A, Mariga ST, Kirenga B, Pope FD, Thomas GN, et al. Investigating the Association between Wood and Charcoal Domestic Cooking, Respiratory Symptoms and Acute Respiratory Infections among Children Aged Under 5 Years in Uganda: A Cross-Sectional Analysis of the 2016 Demographic and Health Survey. Int J Environ Res Public Health. 2020;17(11):3974.CrossRef
57.
go back to reference Pope D, Diaz E, Smith-Sivertsen T, Lie RT, Bakke P, Balmes JR, Smith KR, Bruce NG. Exposure to Household Air Pollution from Wood Combustion and Association with Respiratory Symptoms and Lung Function in Nonsmoking Women: Results from the RESPIRE Trial. Guatemala Environmental Health Perspectives. 2015;123(4):285–92.CrossRef Pope D, Diaz E, Smith-Sivertsen T, Lie RT, Bakke P, Balmes JR, Smith KR, Bruce NG. Exposure to Household Air Pollution from Wood Combustion and Association with Respiratory Symptoms and Lung Function in Nonsmoking Women: Results from the RESPIRE Trial. Guatemala Environmental Health Perspectives. 2015;123(4):285–92.CrossRef
58.
go back to reference Langbein J. Firewood, smoke and respiratory diseases in developing countries-The neglected role of outdoor cooking. PLoS ONE. 2017;12(6):e0178631–e0178631.CrossRef Langbein J. Firewood, smoke and respiratory diseases in developing countries-The neglected role of outdoor cooking. PLoS ONE. 2017;12(6):e0178631–e0178631.CrossRef
59.
go back to reference Rosa G, Majorin F, Boisson S, Barstow C, Johnson M, Kirby M, Ngabo F, Thomas E, Clasen T. Assessing the impact of water filters and improved cook stoves on drinking water quality and household air pollution: a randomised controlled trial in Rwanda. PLoS ONE. 2014;9(3): e91011.CrossRef Rosa G, Majorin F, Boisson S, Barstow C, Johnson M, Kirby M, Ngabo F, Thomas E, Clasen T. Assessing the impact of water filters and improved cook stoves on drinking water quality and household air pollution: a randomised controlled trial in Rwanda. PLoS ONE. 2014;9(3): e91011.CrossRef
60.
go back to reference Lomnicki S, Gullett B, Stöger T, Kennedy I, Diaz J, Dugas TR, Varner K, Carlin DJ, Dellinger B, Cormier SA. Combustion by-products and their health effects—combustion engineering and global health in the 21st century: issues and challenges. Int J Toxicol. 2014;33(1):3–13.CrossRef Lomnicki S, Gullett B, Stöger T, Kennedy I, Diaz J, Dugas TR, Varner K, Carlin DJ, Dellinger B, Cormier SA. Combustion by-products and their health effects—combustion engineering and global health in the 21st century: issues and challenges. Int J Toxicol. 2014;33(1):3–13.CrossRef
61.
go back to reference Mabonga F, Beattie TK, Luwe K, Morse T, Hope C, Beverland IJ. Exposure to Air Pollution in Rural Malawi: Impact of Cooking Methods on Blood Pressure and Peak Expiratory Flow. Int J Environ Res Public Health. 2021;18(14):7680.CrossRef Mabonga F, Beattie TK, Luwe K, Morse T, Hope C, Beverland IJ. Exposure to Air Pollution in Rural Malawi: Impact of Cooking Methods on Blood Pressure and Peak Expiratory Flow. Int J Environ Res Public Health. 2021;18(14):7680.CrossRef
Metadata
Title
Use of biomass fuels predicts indoor particulate matter and carbon monoxide concentrations; evidence from an informal urban settlement in Fort Portal city, Uganda
Authors
Winnifred K. Kansiime
Richard K. Mugambe
Edwinah Atusingwize
Solomon T. Wafula
Vincent Nsereko
Tonny Ssekamatte
Aisha Nalugya
Eric Stephen Coker
John C. Ssempebwa
John Bosco Isunju
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2022
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-022-14015-w

Other articles of this Issue 1/2022

BMC Public Health 1/2022 Go to the issue