Skip to main content
Top
Published in: BMC Urology 1/2021

Open Access 01-12-2021 | Urolithiasis | Research article

External validation of the R.I.R.S. scoring system to predict stone-free rate after retrograde intrarenal surgery

Authors: Cong Wang, ShouTong Wang, Xuemei Wang, Jun Lu

Published in: BMC Urology | Issue 1/2021

Login to get access

Abstract

Background

The R.I.R.S. scoring system is defined as a novel and straightforward scoring system that uses the main parameters (kidney stone density, inferior pole stones, stone burden, and renal infundibular length) to identify most appropriate patients for retrograde intrarenal surgery (RIRS). We strived to evaluate the accuracy of the R.I.R.S. scoring system in predicting the stone-free rate (SFR) after RIRS.

Methods

In our medical center, we retrospectively analyzed charts of patients who had, between September 2018 and December 2019, been treated by RIRS for kidney stones. A total of 147 patients were enrolled in the study. Parameters were measured for each of the four specified variables.

Results

Stone-free status was achieved in 105 patients (71.43%), and 42 patients had one or more residual fragments (28.57%). Differences in stone characteristics, including renal infundibulopelvic angle, renal infundibular length, lower pole stone, kidney stone density, and stone burden were statistically significant in patients whether RIRS achieved stone-free status or not (P < 0.001, P: 0.005, P < 0.001, P < 0.001, P: 0.003, respectively). R.I.R.S. scores were significantly lower in patients treated successfully with RIRS than patients in which RIRS failed (P < 0.001). Binary logistic regression analyses revealed that R.I.R.S. scores were independent factors affecting RIRS success (P = 0.033). The area under the curve of the R.I.R.S. scoring system was 0.737.

Conclusions

Our study retrospectively validates that the R.I.R.S. scoring system is associated with SFR after RIRS in the treatment of renal stones, and can predict accurately.
Literature
1.
go back to reference Van Cleynenbreugel B, Kilic O, Akand M. Retrograde intrarenal surgery for renal stones—part 1. Türk Üroloji Dergisi/Turk J Urol. 2017;43(2):112–21.CrossRef Van Cleynenbreugel B, Kilic O, Akand M. Retrograde intrarenal surgery for renal stones—part 1. Türk Üroloji Dergisi/Turk J Urol. 2017;43(2):112–21.CrossRef
2.
go back to reference Kilic O, Akand M, Van Cleynenbreugel B. Retrograde intrarenal surgery for renal stones—part 2. Türk Üroloji Dergisi/Turk J Urol. 2017;43(3):252–60.CrossRef Kilic O, Akand M, Van Cleynenbreugel B. Retrograde intrarenal surgery for renal stones—part 2. Türk Üroloji Dergisi/Turk J Urol. 2017;43(3):252–60.CrossRef
3.
go back to reference Akman T, Binbay M, Ozgor F, Ugurlu M, Tekinarslan E, Kezer C, Aslan R, Muslumanoglu AY. Comparison of percutaneous nephrolithotomy and retrograde flexible nephrolithotripsy for the management of 2–4 cm stones: a matched-pair analysis. BJU INT. 2012;109(9):1384–9.CrossRef Akman T, Binbay M, Ozgor F, Ugurlu M, Tekinarslan E, Kezer C, Aslan R, Muslumanoglu AY. Comparison of percutaneous nephrolithotomy and retrograde flexible nephrolithotripsy for the management of 2–4 cm stones: a matched-pair analysis. BJU INT. 2012;109(9):1384–9.CrossRef
4.
go back to reference Breda A, Angerri O. Retrograde intrarenal surgery for kidney stones larger than 22.5 cm. Curr Opin Urol. 2014;24(2):179–83.CrossRef Breda A, Angerri O. Retrograde intrarenal surgery for kidney stones larger than 22.5 cm. Curr Opin Urol. 2014;24(2):179–83.CrossRef
5.
go back to reference Xiao Y, Li D, Chen L, Xu Y, Zhang D, Shao Y, Lu J. The R.I.R.S. scoring system: an innovative scoring system for predicting stone-free rate following retrograde intrarenal surgery. BMC Urol. 2017;17(1):1–8.CrossRef Xiao Y, Li D, Chen L, Xu Y, Zhang D, Shao Y, Lu J. The R.I.R.S. scoring system: an innovative scoring system for predicting stone-free rate following retrograde intrarenal surgery. BMC Urol. 2017;17(1):1–8.CrossRef
6.
go back to reference Ghani KR, Wolf JJ. What is the stone-free rate following flexible ureteroscopy for kidney stones? Nat Rev Urol. 2015;12(5):281–8.CrossRef Ghani KR, Wolf JJ. What is the stone-free rate following flexible ureteroscopy for kidney stones? Nat Rev Urol. 2015;12(5):281–8.CrossRef
7.
go back to reference Traxer O, Thomas A. Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery. J Urol. 2013;189(2):580–4.CrossRef Traxer O, Thomas A. Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery. J Urol. 2013;189(2):580–4.CrossRef
8.
go back to reference Schatloff O, Lindner U, Ramon J, Winkler HZ. Randomized trial of stone fragment active retrieval versus spontaneous passage during holmium laser lithotripsy for ureteral stones. J Urol. 2010;183(3):1031–6.CrossRef Schatloff O, Lindner U, Ramon J, Winkler HZ. Randomized trial of stone fragment active retrieval versus spontaneous passage during holmium laser lithotripsy for ureteral stones. J Urol. 2010;183(3):1031–6.CrossRef
9.
go back to reference Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T. EAU guidelines on interventional treatment for urolithiasis. Eur Urol. 2016;69(3):475–82.CrossRef Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T. EAU guidelines on interventional treatment for urolithiasis. Eur Urol. 2016;69(3):475–82.CrossRef
10.
go back to reference Preminger GM. Management of lower pole renal calculi: shock wave lithotripsy versus percutaneous nephrolithotomy versus flexible ureteroscopy. Urol Res. 2006;34(2):108–11.CrossRef Preminger GM. Management of lower pole renal calculi: shock wave lithotripsy versus percutaneous nephrolithotomy versus flexible ureteroscopy. Urol Res. 2006;34(2):108–11.CrossRef
11.
go back to reference Sfoungaristos S, Gofrit ON, Mykoniatis I, Landau EH, Katafigiotis I, Pode D, Constantinides CA, Duvdevani M. External validation of Resorlu-Unsal stone score as predictor of outcomes after retrograde intrarenal surgery. Int Urol Nephrol. 2016;48(8):1247–52.CrossRef Sfoungaristos S, Gofrit ON, Mykoniatis I, Landau EH, Katafigiotis I, Pode D, Constantinides CA, Duvdevani M. External validation of Resorlu-Unsal stone score as predictor of outcomes after retrograde intrarenal surgery. Int Urol Nephrol. 2016;48(8):1247–52.CrossRef
12.
go back to reference Resorlu B, Unsal A, Gulec H, Oztuna D. A new scoring system for predicting stone-free rate after retrograde intrarenal surgery: The “Resorlu-Unsal Stone Score.” Urology. 2012;80(3):512–8.CrossRef Resorlu B, Unsal A, Gulec H, Oztuna D. A new scoring system for predicting stone-free rate after retrograde intrarenal surgery: The “Resorlu-Unsal Stone Score.” Urology. 2012;80(3):512–8.CrossRef
13.
go back to reference Celik S, Sefik E, Basmacı I, Bozkurt IH, Aydın ME, Yonguc T, Degirmenci T. A novel method for prediction of stone composition: the average and difference of Hounsfield units and their cut-off values. Int Urol Nephrol. 2018;50(8):1397–405.CrossRef Celik S, Sefik E, Basmacı I, Bozkurt IH, Aydın ME, Yonguc T, Degirmenci T. A novel method for prediction of stone composition: the average and difference of Hounsfield units and their cut-off values. Int Urol Nephrol. 2018;50(8):1397–405.CrossRef
14.
go back to reference Magrill D, Patel U, Anson K. Impact of imaging in urolithiasis treatment planning. Curr Opin Urol. 2013;23(2):158–63.CrossRef Magrill D, Patel U, Anson K. Impact of imaging in urolithiasis treatment planning. Curr Opin Urol. 2013;23(2):158–63.CrossRef
15.
go back to reference Thiruchelvam N, Mostafid H, Ubhayakar G. Planning percutaneous nephrolithotomy using multidetector computed tomography urography, multiplanar reconstruction and three-dimensional reformatting. BJU Int. 2005;95(9):1280–4.CrossRef Thiruchelvam N, Mostafid H, Ubhayakar G. Planning percutaneous nephrolithotomy using multidetector computed tomography urography, multiplanar reconstruction and three-dimensional reformatting. BJU Int. 2005;95(9):1280–4.CrossRef
16.
go back to reference Weltings S, Hulsbos S, Kieft GJ, Pelger RCM, Roshani H. The anatomy of the renal pyelocaliceal system studied by CTU. Abdom Radiol. 2019;44(2):612–8.CrossRef Weltings S, Hulsbos S, Kieft GJ, Pelger RCM, Roshani H. The anatomy of the renal pyelocaliceal system studied by CTU. Abdom Radiol. 2019;44(2):612–8.CrossRef
Metadata
Title
External validation of the R.I.R.S. scoring system to predict stone-free rate after retrograde intrarenal surgery
Authors
Cong Wang
ShouTong Wang
Xuemei Wang
Jun Lu
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Urolithiasis
Published in
BMC Urology / Issue 1/2021
Electronic ISSN: 1471-2490
DOI
https://doi.org/10.1186/s12894-021-00801-y

Other articles of this Issue 1/2021

BMC Urology 1/2021 Go to the issue