Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2014

01-05-2014 | Laboratory Investigation

Uptake by human glioma cell lines and biological effects of a peptide-nucleic acids targeting miR-221

Authors: Eleonora Brognara, Enrica Fabbri, Elena Bazzoli, Giulia Montagner, Claudio Ghimenton, Albino Eccher, Cinzia Cantù, Alex Manicardi, Nicoletta Bianchi, Alessia Finotti, Giulia Breveglieri, Monica Borgatti, Roberto Corradini, Valentino Bezzerri, Giulio Cabrini, Roberto Gambari

Published in: Journal of Neuro-Oncology | Issue 1/2014

Login to get access

Abstract

MicroRNAs are a family of small noncoding RNAs regulating gene expression by sequence-selective mRNA targeting, leading to a translational repression or mRNA degradation. The oncomiR miR-221 is highly expressed in human gliomas, as confirmed in this study in samples of low and high grade gliomas, as well in the cell lines U251, U373 and T98G. In order to alter the biological functions of miR-221, a peptide nucleic acid targeting miR-221 (R8-PNA-a221) was produced, bearing a oligoarginine peptide (R8) to facilitate uptake by glioma cells. The effects of R8-PNA-a221 were analyzed in U251, U373 and T98G glioma cells and found to strongly inhibit miR-221. In addition, the effects of R8-PNA-a221 on p27Kip1 (a target of miR-221) were analyzed in U251 and T98G cells by RT-qPCR and by Western blotting. No change of p27Kip1 mRNA content occurs in U251 cells in the presence of PNA-a221 (lacking the R8 peptide), whereas significant increase of p27Kip1 mRNA was observed with the R8-PNA-a221. These data were confirmed by Western blot assay. A clear increment of p27Kip1 protein expression in the samples treated with R8-PNA-a221 was detected. In addition, R8-PNA-a221 was found able to increase TIMP3 expression (another target of miR-221) in T98G cells. These results suggest that PNAs against oncomiRNA miR-221 might be proposed for experimental treatment of human gliomas.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500PubMedCrossRef Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500PubMedCrossRef
2.
go back to reference Nielsen PE (2001) Targeting double stranded DNA with peptide nucleic acid (PNA). Curr Med Chem 8:545–550PubMedCrossRef Nielsen PE (2001) Targeting double stranded DNA with peptide nucleic acid (PNA). Curr Med Chem 8:545–550PubMedCrossRef
3.
go back to reference Borgatti M, Lampronti I, Romanelli A, Pedone C, Saviano M et al (2003) Transcription factor decoy molecules based on a peptide nucleic acid (PNA)-DNA chimera mimicking Sp1 binding sites. J Biol Chem 278:7500–7509PubMedCrossRef Borgatti M, Lampronti I, Romanelli A, Pedone C, Saviano M et al (2003) Transcription factor decoy molecules based on a peptide nucleic acid (PNA)-DNA chimera mimicking Sp1 binding sites. J Biol Chem 278:7500–7509PubMedCrossRef
4.
go back to reference Gambari R (2001) Peptide-nucleic acids (PNAs): a tool for the development of gene expression modifiers. Curr Pharm Des 7:1839–1862PubMedCrossRef Gambari R (2001) Peptide-nucleic acids (PNAs): a tool for the development of gene expression modifiers. Curr Pharm Des 7:1839–1862PubMedCrossRef
5.
go back to reference Gambari R (2004) Biological activity and delivery of peptide nucleic acids (PNA)-DNA chimeras for transcription factor decoy (TFD) pharmacotherapy. Curr Med Chem 11:1253–1263PubMedCrossRef Gambari R (2004) Biological activity and delivery of peptide nucleic acids (PNA)-DNA chimeras for transcription factor decoy (TFD) pharmacotherapy. Curr Med Chem 11:1253–1263PubMedCrossRef
6.
go back to reference Nielsen PE (2010) Peptide nucleic acids (PNA) in chemical biology and drug discovery. Chem Biodivers 7:786–804PubMedCrossRef Nielsen PE (2010) Peptide nucleic acids (PNA) in chemical biology and drug discovery. Chem Biodivers 7:786–804PubMedCrossRef
7.
go back to reference Hatamoto M, Ohashi A, Imachi H (2010) Peptide nucleic acids (PNAs) antisense effect to bacterial growth and their application potentiality in biotechnology. Appl Microbiol Biotechnol 86:397–402PubMedCrossRef Hatamoto M, Ohashi A, Imachi H (2010) Peptide nucleic acids (PNAs) antisense effect to bacterial growth and their application potentiality in biotechnology. Appl Microbiol Biotechnol 86:397–402PubMedCrossRef
8.
go back to reference Gambari R, Borgatti M, Bezzerri V, Nicolis E, Lampronti I et al (2010) Decoy oligodeoxyribonucleotides and peptide nucleic acids-DNA chimeras targeting nuclear factor kappa-B: inhibition of IL-8 gene expression in cystic fibrosis cells infected with Pseudomonas aeruginosa. Biochem Pharmacol 80:1887–1894PubMedCrossRef Gambari R, Borgatti M, Bezzerri V, Nicolis E, Lampronti I et al (2010) Decoy oligodeoxyribonucleotides and peptide nucleic acids-DNA chimeras targeting nuclear factor kappa-B: inhibition of IL-8 gene expression in cystic fibrosis cells infected with Pseudomonas aeruginosa. Biochem Pharmacol 80:1887–1894PubMedCrossRef
9.
10.
go back to reference Nielsen PE (2010) Gene targeting and expression modulation by peptide nucleic acids (PNA). Curr Pharm Des 16:3118–3123PubMedCrossRef Nielsen PE (2010) Gene targeting and expression modulation by peptide nucleic acids (PNA). Curr Pharm Des 16:3118–3123PubMedCrossRef
11.
go back to reference Manicardi A, Fabbri E, Tedeschi T, Sforza S, Bianchi N et al (2012) Cellular Uptakes, biostabilities and anti-miR-210 activities of chiral Arginine-PNAs in leukaemic K562 cells. Chembiochem 13:1327–1337PubMedCentralPubMedCrossRef Manicardi A, Fabbri E, Tedeschi T, Sforza S, Bianchi N et al (2012) Cellular Uptakes, biostabilities and anti-miR-210 activities of chiral Arginine-PNAs in leukaemic K562 cells. Chembiochem 13:1327–1337PubMedCentralPubMedCrossRef
12.
go back to reference Fabbri E, Manicardi A, Tedeschi T, Sforza S, Bianchi N et al (2011) Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs). ChemMedChem 6:2192–2202PubMedCrossRef Fabbri E, Manicardi A, Tedeschi T, Sforza S, Bianchi N et al (2011) Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs). ChemMedChem 6:2192–2202PubMedCrossRef
13.
go back to reference Gambari R, Fabbri E, Borgatti M, Lampronti I, Finotti A et al (2011) Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development. Biochem Pharmacol 82:1416–1429PubMedCrossRef Gambari R, Fabbri E, Borgatti M, Lampronti I, Finotti A et al (2011) Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development. Biochem Pharmacol 82:1416–1429PubMedCrossRef
14.
go back to reference Fabani MM, Gait MJ (2008) MiR-122 targeting with LNA/2’-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA 14:336–346PubMedCentralPubMedCrossRef Fabani MM, Gait MJ (2008) MiR-122 targeting with LNA/2’-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA 14:336–346PubMedCentralPubMedCrossRef
15.
go back to reference Fabani MM, Abreu-Goodger C, Williams D, Lyons PA, Torres AG et al (2010) Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Res 38:4466–4475PubMedCentralPubMedCrossRef Fabani MM, Abreu-Goodger C, Williams D, Lyons PA, Torres AG et al (2010) Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Res 38:4466–4475PubMedCentralPubMedCrossRef
16.
go back to reference Brown PN, Yin H (2013) PNA-based microRNA inhibitors elicit anti-inflammatory effects in microglia cells. Chem Commun (Camb) 49:4415–4417CrossRef Brown PN, Yin H (2013) PNA-based microRNA inhibitors elicit anti-inflammatory effects in microglia cells. Chem Commun (Camb) 49:4415–4417CrossRef
17.
go back to reference Brognara E, Fabbri E, Aimi F, Manicardi A, Bianchi N et al (2012) Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells. Int J Oncol 41:2119–2127PubMed Brognara E, Fabbri E, Aimi F, Manicardi A, Bianchi N et al (2012) Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells. Int J Oncol 41:2119–2127PubMed
18.
go back to reference He L, Hannon GJ (2010) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531CrossRef He L, Hannon GJ (2010) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531CrossRef
19.
go back to reference Piva R, Spandidos DA, Gambari R (2013) From microRNA functions to microRNA therapeutics: novel targets and novel drugs in breast cancer research and treatment. Int J Oncol 43:985–994PubMedCentralPubMed Piva R, Spandidos DA, Gambari R (2013) From microRNA functions to microRNA therapeutics: novel targets and novel drugs in breast cancer research and treatment. Int J Oncol 43:985–994PubMedCentralPubMed
21.
go back to reference Lambertini E, Lolli A, Vezzali F, Penolazzi L, Gambari R, Piva R (2012) Correlation between Slug transcription factor and miR-221 in MDA-MB-231 breast cancer cells. BMC Cancer 12:445PubMedCentralPubMedCrossRef Lambertini E, Lolli A, Vezzali F, Penolazzi L, Gambari R, Piva R (2012) Correlation between Slug transcription factor and miR-221 in MDA-MB-231 breast cancer cells. BMC Cancer 12:445PubMedCentralPubMedCrossRef
22.
go back to reference Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV et al (2007) MiR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282:2316–2324CrossRef Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV et al (2007) MiR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282:2316–2324CrossRef
23.
go back to reference Zhang C, Zhang J, Hao J, Shi Z, Wang Y et al (2012) High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. J Transl Med 10:119PubMedCentralPubMedCrossRef Zhang C, Zhang J, Hao J, Shi Z, Wang Y et al (2012) High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. J Transl Med 10:119PubMedCentralPubMedCrossRef
24.
25.
go back to reference Lakomy R, Sana J, Hankeova S, Fadrus P, Kren L et al (2011) MiR-195, miR-196b, miR-181c, miR-21 expression levels and O-6-methylguanine-DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci 102:2186–2190PubMedCrossRef Lakomy R, Sana J, Hankeova S, Fadrus P, Kren L et al (2011) MiR-195, miR-196b, miR-181c, miR-21 expression levels and O-6-methylguanine-DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci 102:2186–2190PubMedCrossRef
26.
go back to reference Le Sage C, Nagel R, Egan DA, Schrier M, Mesman E (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26:3699–3708PubMedCentralPubMedCrossRef Le Sage C, Nagel R, Egan DA, Schrier M, Mesman E (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26:3699–3708PubMedCentralPubMedCrossRef
27.
28.
go back to reference Bhatia B (2010) On the move: p27Kip1 drives cell motility in glioma cells. Cell Cycle 9:1231–1240PubMedCrossRef Bhatia B (2010) On the move: p27Kip1 drives cell motility in glioma cells. Cell Cycle 9:1231–1240PubMedCrossRef
29.
go back to reference Lu X, Zhao P, Zhang C, Fu Z, Chen Y et al (2009) Analysis of miR-221 and p27 expression in human gliomas. Mol Med Rep 2:651–656PubMed Lu X, Zhao P, Zhang C, Fu Z, Chen Y et al (2009) Analysis of miR-221 and p27 expression in human gliomas. Mol Med Rep 2:651–656PubMed
30.
go back to reference Gillies JK, Lorimer IA (2007) Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6:2005–2009PubMedCrossRef Gillies JK, Lorimer IA (2007) Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6:2005–2009PubMedCrossRef
31.
go back to reference Ueda R, Kohanbash G, Sasaki K, Fujita M, Zhu X et al (2009) Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci USA 106:10746–10751PubMedCentralPubMedCrossRef Ueda R, Kohanbash G, Sasaki K, Fujita M, Zhu X et al (2009) Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci USA 106:10746–10751PubMedCentralPubMedCrossRef
32.
go back to reference Zerrouqi A, Pyrzynska B, Febbraio M, Brat DJ, Van Meir EG (2012) P14ARF inhibits human glioblastoma-induced angiogenesis by upregulating the expression of TIMP3. J Clin Invest 122:1283–1295PubMedCentralPubMedCrossRef Zerrouqi A, Pyrzynska B, Febbraio M, Brat DJ, Van Meir EG (2012) P14ARF inhibits human glioblastoma-induced angiogenesis by upregulating the expression of TIMP3. J Clin Invest 122:1283–1295PubMedCentralPubMedCrossRef
33.
go back to reference Wang Y, Wang X, Zhang J, Sun G, Luo H et al (2012) MicroRNAs involved in the EGFR/PTEN/AKT pathway in gliomas. J Neurooncol 106:217–224PubMedCrossRef Wang Y, Wang X, Zhang J, Sun G, Luo H et al (2012) MicroRNAs involved in the EGFR/PTEN/AKT pathway in gliomas. J Neurooncol 106:217–224PubMedCrossRef
34.
go back to reference Zhang C, Kang C, You Y, Pu P, Yang W (2009) Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27Kip1 in vitro and in vivo. Int J Oncol 34:1653–1660PubMedCrossRef Zhang C, Kang C, You Y, Pu P, Yang W (2009) Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27Kip1 in vitro and in vivo. Int J Oncol 34:1653–1660PubMedCrossRef
35.
go back to reference Schiappacassi M, Lovat F, Canzonieri V, Belletti B, Berton S et al (2008) p27Kip1 expression inhibits glioblastoma growth, invasion, and tumor-induced neoangiogenesis. Mol Cancer Ther 7:1164–1175PubMedCrossRef Schiappacassi M, Lovat F, Canzonieri V, Belletti B, Berton S et al (2008) p27Kip1 expression inhibits glioblastoma growth, invasion, and tumor-induced neoangiogenesis. Mol Cancer Ther 7:1164–1175PubMedCrossRef
36.
go back to reference Tabu K, Ohnishi A, Sunden Y, Suzuki T, Tsuda M et al (2006) A novel function of OLIG2 to suppress human glial tumor cell growth via p27Kip1 transactivation. J Cell Sci 119:1433–1441PubMedCrossRef Tabu K, Ohnishi A, Sunden Y, Suzuki T, Tsuda M et al (2006) A novel function of OLIG2 to suppress human glial tumor cell growth via p27Kip1 transactivation. J Cell Sci 119:1433–1441PubMedCrossRef
37.
go back to reference Cao X, Gu Y, Jiang L, Wang Y, Liu F et al (2013) A new approach to screening cancer stem cells from the U251 human glioma cell line based on cell growth state. Oncol Rep 29:1013–1018PubMed Cao X, Gu Y, Jiang L, Wang Y, Liu F et al (2013) A new approach to screening cancer stem cells from the U251 human glioma cell line based on cell growth state. Oncol Rep 29:1013–1018PubMed
38.
go back to reference Abdullah NA, Sallis B, Nuttall R, Schubert FR, Ahsan M et al (2012) Induction of apoptosis and reduction of MMP gene expression in the U373 cell line by polyphenolics in Aronia melanocarpa and by curcumin. Oncol Rep 28:1435–1442 Abdullah NA, Sallis B, Nuttall R, Schubert FR, Ahsan M et al (2012) Induction of apoptosis and reduction of MMP gene expression in the U373 cell line by polyphenolics in Aronia melanocarpa and by curcumin. Oncol Rep 28:1435–1442
39.
go back to reference Pen A, Durocher Y, Slinn J, Rukhlova M, Charlebois C et al (2011) Insulin-like growth factor binding protein 7 exhibits tumor suppressive and vessel stabilization properties in U87MG and T98G glioblastoma cell lines. Cancer Biol Ther 12:634–646PubMedCrossRef Pen A, Durocher Y, Slinn J, Rukhlova M, Charlebois C et al (2011) Insulin-like growth factor binding protein 7 exhibits tumor suppressive and vessel stabilization properties in U87MG and T98G glioblastoma cell lines. Cancer Biol Ther 12:634–646PubMedCrossRef
40.
go back to reference Abes R, Arzumanov A, Moulton H, Abes S, Ivanova G (2008) Arginine-rich cell penetrating peptides: design, structure–activity, and applications to alter pre-mRNA splicing by steric-block oligonucleotides. J Pept Sci 14:455–460PubMedCrossRef Abes R, Arzumanov A, Moulton H, Abes S, Ivanova G (2008) Arginine-rich cell penetrating peptides: design, structure–activity, and applications to alter pre-mRNA splicing by steric-block oligonucleotides. J Pept Sci 14:455–460PubMedCrossRef
41.
go back to reference Jensen KK, Orum H, Nielsen PE, Nordén B (1997) Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 36:5072–5077PubMedCrossRef Jensen KK, Orum H, Nielsen PE, Nordén B (1997) Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 36:5072–5077PubMedCrossRef
42.
go back to reference Corradini R, Feriotto G, Sforza S, Marchelli R, Gambari R (2004) Enhanced recognition of cystic fibrosis W1282X DNA point mutation by chiral peptide nucleic acid probes by a surface plasmon resonance biosensor. J Mol Recognit 17:76–84PubMedCrossRef Corradini R, Feriotto G, Sforza S, Marchelli R, Gambari R (2004) Enhanced recognition of cystic fibrosis W1282X DNA point mutation by chiral peptide nucleic acid probes by a surface plasmon resonance biosensor. J Mol Recognit 17:76–84PubMedCrossRef
43.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCentralPubMedCrossRef Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCentralPubMedCrossRef
44.
45.
go back to reference Rothbard JB, Kreider E, Van Deusen CL, Wright L, Wylie BL (2002) Arginine-rich molecular transporters for drug delivery: role of backbone spacing in cellular uptake. J Med Chem 45:3612–3618PubMedCrossRef Rothbard JB, Kreider E, Van Deusen CL, Wright L, Wylie BL (2002) Arginine-rich molecular transporters for drug delivery: role of backbone spacing in cellular uptake. J Med Chem 45:3612–3618PubMedCrossRef
46.
go back to reference Qian X, Ren Y, Shi Z, Long L, Pu P et al (2012) Sequence-dependent synergistic inhibition of human glioma cell lines by combined temozolomide and miR-21 inhibitor gene therapy. Mol Pharm 9:2636–2645PubMedCrossRef Qian X, Ren Y, Shi Z, Long L, Pu P et al (2012) Sequence-dependent synergistic inhibition of human glioma cell lines by combined temozolomide and miR-21 inhibitor gene therapy. Mol Pharm 9:2636–2645PubMedCrossRef
47.
go back to reference Chen L, Zhang J, Han L, Zhang A, Zhang C et al (2012) Down regulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncol Rep 27:854–860PubMed Chen L, Zhang J, Han L, Zhang A, Zhang C et al (2012) Down regulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncol Rep 27:854–860PubMed
48.
go back to reference Suzuki T, Wu D, Schlachetzki F, Li JY, Boado RJ (2004) Imaging endogenous gene expression in brain cancer in vivo with 111In-peptide nucleic acid antisense radiopharmaceuticals and brain drug-targeting technology. J Nucl Med 45:1766–1775PubMed Suzuki T, Wu D, Schlachetzki F, Li JY, Boado RJ (2004) Imaging endogenous gene expression in brain cancer in vivo with 111In-peptide nucleic acid antisense radiopharmaceuticals and brain drug-targeting technology. J Nucl Med 45:1766–1775PubMed
49.
go back to reference Boado RJ, Tsukamoto H, Pardridge WM (1998) Drug delivery of antisense molecules to the brain for treatment of Alzheimer’s disease and cerebral AIDS. J Pharm Sci 87:1308–1315PubMedCrossRef Boado RJ, Tsukamoto H, Pardridge WM (1998) Drug delivery of antisense molecules to the brain for treatment of Alzheimer’s disease and cerebral AIDS. J Pharm Sci 87:1308–1315PubMedCrossRef
50.
go back to reference Sethi D, Chen CP, Jing RY, Thakur ML, Wickstrom E (2012) Fluorescent peptide-PNA chimeras for imaging monoamine oxidase A mRNA in neuronal cells. Bioconjug Chem 23:158–163PubMedCentralPubMedCrossRef Sethi D, Chen CP, Jing RY, Thakur ML, Wickstrom E (2012) Fluorescent peptide-PNA chimeras for imaging monoamine oxidase A mRNA in neuronal cells. Bioconjug Chem 23:158–163PubMedCentralPubMedCrossRef
Metadata
Title
Uptake by human glioma cell lines and biological effects of a peptide-nucleic acids targeting miR-221
Authors
Eleonora Brognara
Enrica Fabbri
Elena Bazzoli
Giulia Montagner
Claudio Ghimenton
Albino Eccher
Cinzia Cantù
Alex Manicardi
Nicoletta Bianchi
Alessia Finotti
Giulia Breveglieri
Monica Borgatti
Roberto Corradini
Valentino Bezzerri
Giulio Cabrini
Roberto Gambari
Publication date
01-05-2014
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2014
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-014-1405-6

Other articles of this Issue 1/2014

Journal of Neuro-Oncology 1/2014 Go to the issue